Question

In: Mechanical Engineering

1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and...

1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa
and leaves at P2 = 105 kPa. You may assume an adiabatic
diffuser and constant specific heats. Find T2 if:
a) V1 = 10 m/s, V2 = 0 m/s
b) V1 = 100 m/s, V2 = 90 m/s
c) V1 = 500 m/s, V2 = 490 m/s
d) V1 = 1000 m/s, V2 = 990 m/s

Solutions

Expert Solution


Related Solutions

Water at p1 = 20 bar, T1 = 400oC enters a turbine operating at steady state...
Water at p1 = 20 bar, T1 = 400oC enters a turbine operating at steady state and exits at p2 = 1.5 bar, T2 = 220oC. The water mass flow rate is 4000 kg/hour. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power produced by the turbine, in kW, and the rate of entropy production in the turbine, in kW/K.
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 340...
Air as an ideal gas enters a diffuser operating at steady state at 5 bar, 340 K with a velocity of 512 m/s. The exit velocity is 110 m/s. For adiabatic operation with no internal irreversibilities, determine the exit temperature, in K, and the exit pressure, in bar: (a) for k = 1.4. (b) using data from Table A-22.
air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm...
air at 110 kpa and 25 degrees C enters a diffuser with diameter of 10 cm and 25 cm at entrance and exit. if the velocity of air at the entrance is 15 m/s and leaving the diffuser at 1.5 m/s. determine a.) mass rate of air b.) density of air at the exit
Water vapor goes into a diffuser at steady state, with inlet conditions of 800 kPa, 200°C...
Water vapor goes into a diffuser at steady state, with inlet conditions of 800 kPa, 200°C and velocity of 400 m/s. Superheated steam leaves the outlet at 2 MPa and velocity of 2 100 m/s. The inlet area of the diffuser is 14 cm . The system loses heat at the rate of 25 kJ/s to the surroundings. Neglect changes in potential energy between the inlet and outlet. What is the mass flow rate of the water vapor, in kg/s?...
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at...
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. Assuming the air is modeled as an ideal gas with variations in specific heat, determine (a) the rate power is developed, in kJ per kg of air...
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric...
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric flow rate of 230 m3/s and a velocity of 265 m/s. The compressor pressure ratio is 15, and its isentropic efficiency is 87%. Air enters the turbine at 1560 K and the same pressure as at the exit of the compressor. The turbine isentropic efficiency is 89%, and the nozzle isentropic efficiency is 97%. The pressure at the nozzle exit is 18 kPa. Use...
Air enters an adiabatic compressor at 100 kPa (absolute) and 20 ºC at a rate of...
Air enters an adiabatic compressor at 100 kPa (absolute) and 20 ºC at a rate of 0.075 m3 /s, and it exits at a pressure of 900 kPa (absolute). The compressor has an isentropic efficiency of 70 percent. Neglecting the changes in kinetic and potential energies, determine (a) the exit temperature of air and (b) the power required to drive the compressor.
Air enters a nozzle steadily at P1=650kPa and T1=125°C at a velocity of 12m/s and leaves...
Air enters a nozzle steadily at P1=650kPa and T1=125°C at a velocity of 12m/s and leaves at 150m/s with a pressure of P2=110 kPa and temperature of T2=78°C. If the inlet are of the nozzle is 85cm^2, determine (a) Mass flow rate of air in the nozzle and (b) Exit diameter of nozzle.
Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a...
Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 25 m/s. At the exit, the temperature is 70°C and the pressure is 240 kPa. The pipe diameter is 0.01 m. Determine: (a) the mass flow rate of the refrigerant, in kg/s, (b) the velocity at the exit, in m/s, and (c) the rate of heat transfer between the pipe and its surroundings, in kW.
An air compressor is operating at a steady state. The air enters at with a volumetric...
An air compressor is operating at a steady state. The air enters at with a volumetric flow rate 1.2 m^3/s at 170 kPa and 22 degrees celsius with negligible velocity and leaves at 1500 kPa with velocity of 200 m/s. The power to the compressor is 60 kW and the compressor is cooled at a rate of 15 kJ/kg. Determine the exit area.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT