In: Statistics and Probability
2. (9 pts) It is difficult to determine a person’s body fat percentage accurately without immersing him or her in water. Researchers hoping to find ways to make a good estimate immersed 20 male subjects, then measured their weights shown in the table.
(2 pts) Determine the linear correlation coefficient.
(4 pts) Find the least-squares regression line.
(2 pts) Interpret the slope and y-intercept if appropriate.
(1 pts) Predict the body fat percentage if the weight is 190 lb.
|
Weight (lb) |
Body Fat (%) |
|
175 |
6 |
|
181 |
21 |
|
200 |
15 |
|
159 |
6 |
|
196 |
22 |
|
192 |
31 |
|
205 |
32 |
|
173 |
21 |
|
187 |
25 |
|
188 |
30 |
|
188 |
10 |
|
240 |
20 |
|
175 |
22 |
|
168 |
9 |
|
246 |
38 |
|
160 |
10 |
|
215 |
27 |
|
159 |
12 |
|
146 |
10 |
|
219 |
28 |
Using excel<data<megastat<regression
Here is the output:
| Regression Analysis | ||||||
| r² | 0.485 | |||||
| r | 0.697 | |||||
| Std. Error | 7.049 | |||||
| n | 20 | |||||
| k | 1 | |||||
| Dep. Var. | Body Fat (%)y | |||||
| ANOVA table | ||||||
| Source | SS | df | MS | F | p-value | |
| Regression | 843.3252 | 1 | 843.3252 | 16.97 | .0006 | |
| Residual | 894.4248 | 18 | 49.6903 | |||
| Total | 1,737.7500 | 19 | ||||
| Regression output | confidence interval | |||||
| variables | coefficients | std. error | t (df=18) | p-value | 95% lower | 95% upper |
| Intercept | -27.3763 | 11.55 | -2.37 | 0.03 | -51.64 | -3.12 |
| Weight (lb)x | 0.2499 | 0.0607 | 4.120 | .0006 | 0.1224 | 0.3773 |
| Predicted values for: Body Fat (%)y | ||||||
| 95% Confidence Interval | 95% Prediction Interval | |||||
| Weight (lb)x | Predicted | lower | upper | lower | upper | Leverage |
| 190 | 20.100 | 16.783 | 23.416 | 4.923 | 35.276 | 0.050 |
Determine the linear correlation coefficient.
Solution: r=0.697
Find the least-squares regression line.
Solution: 
Interpret the slope and y-intercept if appropriate.
Solution: Slope=0.2499
Y -intercept= -27.3763
Predict the body fat percentage if the weight is 190 lb.
Solution: Put x=190
