In: Statistics and Probability
2. (9 pts) It is difficult to determine a person’s body fat percentage accurately without immersing him or her in water. Researchers hoping to find ways to make a good estimate immersed 20 male subjects, then measured their weights shown in the table.
(2 pts) Determine the linear correlation coefficient.
(4 pts) Find the least-squares regression line.
(2 pts) Interpret the slope and y-intercept if appropriate.
(1 pts) Predict the body fat percentage if the weight is 190 lb.
Weight (lb) |
Body Fat (%) |
175 |
6 |
181 |
21 |
200 |
15 |
159 |
6 |
196 |
22 |
192 |
31 |
205 |
32 |
173 |
21 |
187 |
25 |
188 |
30 |
188 |
10 |
240 |
20 |
175 |
22 |
168 |
9 |
246 |
38 |
160 |
10 |
215 |
27 |
159 |
12 |
146 |
10 |
219 |
28 |
Using excel<data<megastat<regression
Here is the output:
Regression Analysis | ||||||
r² | 0.485 | |||||
r | 0.697 | |||||
Std. Error | 7.049 | |||||
n | 20 | |||||
k | 1 | |||||
Dep. Var. | Body Fat (%)y | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 843.3252 | 1 | 843.3252 | 16.97 | .0006 | |
Residual | 894.4248 | 18 | 49.6903 | |||
Total | 1,737.7500 | 19 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=18) | p-value | 95% lower | 95% upper |
Intercept | -27.3763 | 11.55 | -2.37 | 0.03 | -51.64 | -3.12 |
Weight (lb)x | 0.2499 | 0.0607 | 4.120 | .0006 | 0.1224 | 0.3773 |
Predicted values for: Body Fat (%)y | ||||||
95% Confidence Interval | 95% Prediction Interval | |||||
Weight (lb)x | Predicted | lower | upper | lower | upper | Leverage |
190 | 20.100 | 16.783 | 23.416 | 4.923 | 35.276 | 0.050 |
Determine the linear correlation coefficient.
Solution: r=0.697
Find the least-squares regression line.
Solution:
Interpret the slope and y-intercept if appropriate.
Solution: Slope=0.2499
Y -intercept= -27.3763
Predict the body fat percentage if the weight is 190 lb.
Solution: Put x=190