Question

In: Statistics and Probability

Using RStudio 15. (9 pts) A particular basketball player has a season long free throw percentage...

Using RStudio

15. (9 pts) A particular basketball player has a season long free throw percentage of 55%. The player takes 7 free throws.

a) Explain why this is a binomial probability.

b) Create a table with the probability distribution.

c) Create the histogram for the probability distribution.

Solutions

Expert Solution

a) Yes it is binomial distribution because

i) Trials are fixed and independent

ii) probability of success in each trial is fixed i.e. 0.55

---------------------------------------------------------------------------------------------------------------------------

b)> y <- dbinom(x=0:7,size=7, prob= .55)
> y
[1] 0.003736695 0.031969498 0.117221491 0.238784520 0.291847746 0.214021680 0.087194018
[8] 0.015224352

------------------------------------------------------------------------------------------------------------------------------------------------------------------------

# Create a sample of 50 numbers which are incremented by 1.
x <- seq(0,7,by = 1)

# Create the binomial distribution.
y <- dbinom(x,7,0.55)

# Give the chart file a name.
png(file = "dbinom.png")

# Plot the graph for this sample.
plot(x,y)

# Save the file.
dev.off()


Related Solutions

A basketball player has a probability of p = 0.78 to hit a free throw. During...
A basketball player has a probability of p = 0.78 to hit a free throw. During a training session he hits 65 free throws. calculate the probability that the player hits no more than 50 free throws out of the total 65. (correct to 3 decimal places rounded down)
A basketball player has a 50 % chance of making each free throw. What is the...
A basketball player has a 50 % chance of making each free throw. What is the probability that the player makes at most eight out of ten free throws?
A basketball player completes a free throw 80% of the time. In practice the player goes...
A basketball player completes a free throw 80% of the time. In practice the player goes to the free throw line     and takes 5 shots in a row.     a)   Make a table showing the probability distribution of successes and their probabilities     b)   Draw the probability histogram. c) What is the shape of the distribution? d) What is the mean?     e) What is the standard deviation?
To test his free throw skills, a basketball player shoots 200free throw shots in a...
To test his free throw skills, a basketball player shoots 200 free throw shots in a row. He makes 171 of them. Based on this, what is the probability he will make his first free throw in his next game? What method of calculating probability did you use to calculate this?
In 2018-2019 season, Adam had a free throw success percentage of 64.2%. Assume that free throw...
In 2018-2019 season, Adam had a free throw success percentage of 64.2%. Assume that free throw shots are independent and that he had 8 free throws in a game. Let X= number of free throws made in the next game. -X has a binomial distribution, state the value of n and p. -Find the binomial properties. Create a probability distribution table for X and show this probability distribution below. (Write the following in terms of x in part A and...
Jacob is a basketball player who has a 40% probability of successfully making a free throw...
Jacob is a basketball player who has a 40% probability of successfully making a free throw (a) In practice, Jacob keeps shooting free throws until he makes one in. Then, he stops and runs a lap. i. What is the probability that he attempts at most 2 free throws before he has to run a lap? ii. What is the expected number of free throw attempts Jacob makes before he has to run a lap? (b) In a game, Jacob...
A basketball player was an 84% free throw shooter. a. At the moment you turn the...
A basketball player was an 84% free throw shooter. a. At the moment you turn the game on he is 5 of 7 shooting from the free-throw line. What is the probability that he made 5 of his first 7 shots? b. What is the probability that he made his 5th shot on his 7th attempt? c. What is the probability that he made his first shot on his third attempt?
It is known that a certain basketball player will successfully make a free throw 87.4% of...
It is known that a certain basketball player will successfully make a free throw 87.4% of the time. Suppose that the basketball player attempts to make 14 free throws. What is the probability that the basketball player will make at least 11 free throws?    Let XX be the random variable which denotes the number of free throws that are made by the basketball player. Find the expected value and standard deviation of the random variable.   E(X)=    σ= Suppose...
Let x be a random variable that represents the percentage of successful free throws a professional basketball player makes in a season.
Let x be a random variable that represents the percentage of successful free throws a professional basketball player makes in a season. Let y be a random variable that represents the percentage of successful field goals a professional basketball player makes in a season. A random sample of n = 6 professional basketball players gave the following information. x676575867373 y424048514451 (a) Find Σx, Σy, Σx2, Σy2, Σxy, and r. (Round r to three decimal places.) Σx = Σy = Σx2...
A basketball player is practicing his free throws. This player's probability of making a free throw...
A basketball player is practicing his free throws. This player's probability of making a free throw over his career is 0.592. He will shoot 140 free throws. a) Define a random variable, and write out the probability mass function for the number of free throws this player makes on his 140 attempts. b) What is the probability that this player makes between 60 and 62 free throws, inclusive? c) What is the expected value and variance of the number of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT