In: Finance
Problem 10-25
There is a 8.2 percent coupon bond with ten years to maturity and a current price of $1,039.10. What is the dollar value of an 01 for the bond? (Do not round intermediate calculations. Round your answer to 3 decimal places. Omit the "$" sign in your response.) |
Dollar value | $ |
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =10 |
1039.1 =∑ [(8.2*1000/100)/(1 + YTM/100)^k] + 1000/(1 + YTM/100)^10 |
k=1 |
YTM% = 7.63 |
Calculating modified duration
Period | Cash Flow | PV Cash Flow | Duration Calc |
0 | ($1,039.10) | ||
1 | 76.30 | 70.89 | 70.89 |
2 | 76.30 | 65.87 | 131.73 |
3 | 76.30 | 61.20 | 183.59 |
4 | 76.30 | 56.86 | 227.43 |
5 | 76.30 | 52.83 | 264.14 |
6 | 76.30 | 49.08 | 294.49 |
7 | 76.30 | 45.60 | 319.22 |
8 | 76.30 | 42.37 | 338.96 |
9 | 76.30 | 39.37 | 354.30 |
10 | 1,076.30 | 515.94 | 5,159.41 |
Total | 7,344.16 |
Macaulay Duration | 7.07 |
Modified Duration | 6.57 |
dollar value = modified duration*current price*1 percent change in YTM*0.01 = 6.57*1039.1*0.01*0.01=0.683