Question

In: Statistics and Probability

Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y...

Let the joint p.d.f f(x,y) = 1 for 0 <= x <= 2, 0 <= y <= 1, 2*y <= x. (And 0 otherwise)

Let the random variable W = X + Y.

Without knowing the p.d.f of W, what interval of w values holds at least 60% of the probability?

Solutions

Expert Solution


Related Solutions

Suppose the joint p.d.f of X and Y is f(x,y)= (6/7)(3x+y) if o<y<x<1, and 0 otherwise....
Suppose the joint p.d.f of X and Y is f(x,y)= (6/7)(3x+y) if o<y<x<1, and 0 otherwise. a. Find P(Y<(1/2)) b. Find Cov(X,Y)
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2,...
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2, f(1, 0) = 3, f(1, 1) = 5, f(2, 0) = 5, f(2, 1) = 10. Determine the Lagrange interpolation F(x, y) that interpolates the above data. Use Lagrangian bi-variate interpolation to solve this and also show the working steps.
Assume that X and Y has a continuous joint p.d.f. as (28x^2)*(y^3) in 0<y<x<1 interval. Otherwise...
Assume that X and Y has a continuous joint p.d.f. as (28x^2)*(y^3) in 0<y<x<1 interval. Otherwise the joint p.d.f. is equal to 0. Prove that the mentioned f(x,y) is a joint probability density function. Calculate E(X) Calculate E(Y) Calculate E(X2) Calculate Var(X) Calculate E(XY) Calculate P(X< 0.1) Calculate P(X> 0.1) Calculate P(X>2) Calculate P(-2<X<0.1)
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b) Find the joint cumulative density function of (X,Y) c) Find the marginal pdf of X and Y. d) Find Pr[Y<X2] and Pr[X+Y>0.5]
1 Let f(x, y) = 4xy, 0 < x < 1, 0 < y < 1,...
1 Let f(x, y) = 4xy, 0 < x < 1, 0 < y < 1, zero elsewhere, be the joint probability density function(pdf) of X and Y . Find P(0 < X < 1/2 , 1/4 < Y < 1) , P(X = Y ), and P(X < Y ). Notice that P(X = Y ) would be the volume under the surface f(x, y) = 4xy and above the line segment 0 < x = y < 1...
Let X and Y have the following joint density function f(x,y)=k(1-y) , 0≤x≤y≤1. Find the value...
Let X and Y have the following joint density function f(x,y)=k(1-y) , 0≤x≤y≤1. Find the value of k that makes this a probability density function. Compute the probability that P(X≤3/4, Y≥1/2). Find E(X). Find E(X|Y=y).
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i)...
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i) find the marginal pdf of X and Y respectively, ii) the conditional pdf of Y given x, that is fY|X(y|x), iii) E(Y|x) and Corr(X,Y).
G1. Let f(x, y) = 1 for 0 < x < 1 and x < y...
G1. Let f(x, y) = 1 for 0 < x < 1 and x < y < (x + 1); and 0 otherwise. Find the correlation coefficient for this X and Y . (Hint: the answer is p (1/2) = 0.7071. See if you know all of the steps needed to get there.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT