Question

In: Mechanical Engineering

At the beginning of the compression process of an air-standard dual cycle with a compression ratio...

At the beginning of the compression process of an air-standard dual cycle with a compression ratio of 18, the temperature is 300K and the pressure is 0.1 MPa. The pressure ratio for the constant volume part of the heating process is 1:5:1. The volume ratio for the constant pressure part of the heating process is 1:2:1. Determine:

(a.) The temperature and pressure at the end of each process of the cycle.

(b.) The thermal efficiency.

(c.) The mean effective pressure.

Solutions

Expert Solution


Related Solutions

At the beginning of compression process of an air standard dual cycle operating with a compression...
At the beginning of compression process of an air standard dual cycle operating with a compression ratio of 15.88, the pressure is 95 kPa and the temperature is 300 K. The cutoff ratio for the cycle is 1.15. Determine the thermal efficiency of cycle, if the pressure increases by a factor of 2.15 during the constant volume heat addition process. Use table F2 for variation of specific heats with temperature in the analysis.
An air-standard dual cycle has a compression ratio of 8.6 and displacement of Vd = 2.2...
An air-standard dual cycle has a compression ratio of 8.6 and displacement of Vd = 2.2 L. At the beginning of compression, p1 = 95 kPa, and T1 = 290 K. The heat addition is 4.5 kJ, with one quarter added at constant volume and the rest added at constant pressure. Determine: a) each of the unknown temperatures at the various states, in K. b) the net work of the cycle, in kJ. c) the power developed at 3000 cycles...
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2...
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2 L. At the beginning of compression, p1 = 95 kPa, and T1 = 290 K. The heat addition is 5 kJ, with one quarter added at constant volume and the rest added at constant pressure. Determine: a) each of the unknown temperatures at the various states, in K. b) the net work of the cycle, in kJ. c) the power developed at 3000 cycles...
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2...
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2 L. At the beginning of compression, p1 = 95 kPa, and T1 = 290 K. The heat addition is 4.25 kJ, with one quarter added at constant volume and the rest added at constant pressure. Determine: a) each of the unknown temperatures at the various states, in K. b) the net work of the cycle, in kJ. c) the power developed at 3000 cycles...
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2...
An air-standard dual cycle has a compression ratio of 9.1 and displacement of Vd = 2.2 L. At the beginning of compression, p1 = 95 kPa, and T1 = 290 K. The heat addition is 4.75 kJ, with one quarter added at constant volume and the rest added at constant pressure. Determine: a) each of the unknown temperatures at the various states, in K. b) the net work of the cycle, in kJ. c) the power developed at 3000 cycles...
The compression ratio is 10 in the air standard Otto cycle. Pressure at the beginning of...
The compression ratio is 10 in the air standard Otto cycle. Pressure at the beginning of the compression stroke is 1XY kPa and the temperature is 15 ºC. The heat transfer to the air for each cycle is 18XY kJ / kg air. Draw the T-s and P-v diagrams. (x=9 y=8). Note: Accept that specific temperatures do not change with temperature. Take k = 1.4 and Cp = 1.0031 kJ / kg-K. a) For question 1, we draw the temperature...
The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process,...
The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35°C and 600 cm3 . The temperature at the end of the isentropic expansion process is 800 K. Using specific heat values at room temperature (25°C), determine (a) the highest temperature and pressure in the cycle (b) the amount of heat transferred in during the cycle (kJ) (c) the thermal efficiency (d) the mean effective pressure Part (a)...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.0 L. Determine per cylinder: a)    the volume at state 1. b)    the air mass per cycle. c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.6 L. Determine per cylinder: a) the volume at state 1. (IN LITERS) I have tried 2.8L 0.945 L and 0.789 L but i keep getting it wrong. b) the air mass...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT