Question

In: Physics

The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process,...

The compression ratio of an air-standard Otto cycle is 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35°C and 600 cm3 . The temperature at the end of the isentropic expansion process is 800 K. Using specific heat values at room temperature (25°C), determine

(a) the highest temperature and pressure in the cycle

(b) the amount of heat transferred in during the cycle (kJ)

(c) the thermal efficiency

(d) the mean effective pressure

Part (a) Draw P-V diagram of Otto cycle; see Figure 9-19. Highest temperature and pressure are at State 3; Need to find T3 and P3 Process 3?4 is isentropic expansion; T4 is given as 800 K; Use compression ratio = r = v4/v3 = 9.5 from problem statement Find T3 by using isentropic relationship between temperature & specific volume (Ans. 1970 K)

Process 1?2 is isentropic compression; Use compression ratio = r = v1/v2 = 9.5 from problem statement Find T2 by using isentropic relationship between temperature & specific volume (Ans. 758 K)

Then use ideal gas law to find P2 (Ans. 2340 kPa)

Then use ideal gas law to find P3 with the relationship v3 =v2 (Ans. 6070 kPa)

Part (b) Use ideal gas law to find mass of air Calculate heat transfer into the air from state 2 to state 3 (Ans. 0.59 kJ)

Part (c) Problem statement gave T1 and T4 In part (a) T3 and T2 were found Find the thermal efficiency using these four temperatures (Ans. 59%)

Part (d) Ans. 650 kPa

Solutions

Expert Solution


Related Solutions

An air-standard Otto cycle operates with a compression ratio of 8. At the start of the...
An air-standard Otto cycle operates with a compression ratio of 8. At the start of the compression stroke, the pressure is 15 psia and the temperature is 80 degrees F. The maximum pressure in the cycle is 550 psia. Find a) the thermal efficiency of the cycle, b) the specific volume at the start of the compression stroke, c) the specific volume at the end of the compression stroke, and d) maximum temperature in the cycle.
The compression ratio is 10 in the air standard Otto cycle. Pressure at the beginning of...
The compression ratio is 10 in the air standard Otto cycle. Pressure at the beginning of the compression stroke is 1XY kPa and the temperature is 15 ºC. The heat transfer to the air for each cycle is 18XY kJ / kg air. Draw the T-s and P-v diagrams. (x=9 y=8). Note: Accept that specific temperatures do not change with temperature. Take k = 1.4 and Cp = 1.0031 kJ / kg-K. a) For question 1, we draw the temperature...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.0 L. Determine per cylinder: a)    the volume at state 1. b)    the air mass per cycle. c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.6 L. Determine per cylinder: a) the volume at state 1. (IN LITERS) I have tried 2.8L 0.945 L and 0.789 L but i keep getting it wrong. b) the air mass...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: a) the volume at state 1. b) the air mass per cycle. c) the heat addition per cycle, in kJ. d) the heat rejection per cycle, in...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.2 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
At the beginning of the compression process of an air-standard dual cycle with a compression ratio...
At the beginning of the compression process of an air-standard dual cycle with a compression ratio of 18, the temperature is 300K and the pressure is 0.1 MPa. The pressure ratio for the constant volume part of the heating process is 1:5:1. The volume ratio for the constant pressure part of the heating process is 1:2:1. Determine: (a.) The temperature and pressure at the end of each process of the cycle. (b.) The thermal efficiency. (c.) The mean effective pressure.
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 3.5 and the heat addition per unit mass of air is 1400 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar,...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar, T1 = 290 K, V1 = 400 cm3. The maximum temperature in the cycle is 2200 K and the compression ratio is 8. Determine (a) the heat addition, in kJ. kJ (b) the net work, in kJ. kJ (c) the thermal efficiency. % (d) the mean effective pressure, in bar. bar (e) Develop a full accounting of the exergy transferred to the air during...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT