Question

In: Mechanical Engineering

At the beginning of compression process of an air standard dual cycle operating with a compression...

At the beginning of compression process of an air standard dual cycle operating with a compression ratio of 15.88, the pressure is 95 kPa and the temperature is 300 K. The cutoff ratio for the cycle is 1.15. Determine the thermal efficiency of cycle, if the pressure increases by a factor of 2.15 during the constant volume heat addition process. Use table F2 for variation of specific heats with temperature in the analysis.

Solutions

Expert Solution


Related Solutions

At the beginning of the compression process of an air-standard dual cycle with a compression ratio...
At the beginning of the compression process of an air-standard dual cycle with a compression ratio of 18, the temperature is 300K and the pressure is 0.1 MPa. The pressure ratio for the constant volume part of the heating process is 1:5:1. The volume ratio for the constant pressure part of the heating process is 1:2:1. Determine: (a.) The temperature and pressure at the end of each process of the cycle. (b.) The thermal efficiency. (c.) The mean effective pressure.
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.0 L. Determine per cylinder: a)    the volume at state 1. b)    the air mass per cycle. c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.6 L. Determine per cylinder: a) the volume at state 1. (IN LITERS) I have tried 2.8L 0.945 L and 0.789 L but i keep getting it wrong. b) the air mass...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.7 L. Determine per cylinder: a) the volume at state 1. b) the air mass per cycle. c) the heat addition per cycle, in kJ. d) the heat rejection per cycle, in...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1...
At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vd = 2.2 L. Determine per cylinder: c)    the heat addition per cycle, in kJ. d)    the heat rejection per cycle, in kJ. e)    the net work per cycle, in kJ. f)     the thermal efficiency. g)    the mean effective...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are 1 bar and 47°C, respectively. The heat supplied in the cycle is 1250kJ/kg, two third of this heat is being added at constant volume and the remaining heat is added at constant pressure. If the compression ratio is 16, determine i. the maximum temperature in cycle ii. thermal efficiency of the cycle iii. the mean effective pressure
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 3.5 and the heat addition per unit mass of air is 1400 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar,...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar, T1 = 290 K, V1 = 400 cm3. The maximum temperature in the cycle is 2200 K and the compression ratio is 8. Determine (a) the heat addition, in kJ. kJ (b) the net work, in kJ. kJ (c) the thermal efficiency. % (d) the mean effective pressure, in bar. bar (e) Develop a full accounting of the exergy transferred to the air during...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...
At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 8.5 and the heat addition per unit mass of air is 1200 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT