Question

In: Other

Water vapor goes into a diffuser at steady state, with inlet conditions of 800 kPa, 200°C...

  1. Water vapor goes into a diffuser at steady state, with inlet conditions of 800 kPa, 200°C and velocity of 400 m/s. Superheated steam leaves the outlet at 2 MPa and velocity of

    2
    100 m/s. The inlet area of the diffuser is 14 cm . The system loses heat at the rate of 25 kJ/s

    to the surroundings. Neglect changes in potential energy between the inlet and outlet.

    1. What is the mass flow rate of the water vapor, in kg/s?

    2. What is the specific enthalpy of superheated steam leaving the diffuser, in kJ/kg?

    3. Estimate the temperature of the superheated steam at the outlet, in °C.

      (No linear interpolation, just give the nearest temperature value).

Solutions

Expert Solution


Related Solutions

Water vapor enters a subsonic diffuser at 0.5 bar, 175 °C, and 200 m/s. The diffuser...
Water vapor enters a subsonic diffuser at 0.5 bar, 175 °C, and 200 m/s. The diffuser inlet is 100 cm2. During passage through the diffuser, the fluid velocity is reduced to 50 m/s, pressure increases to 1.0 bar and heat transfer to the surroundings is 0.5 kg/kJ. Determine a) the final temperature, b) the mass flow rate [kg/s] and c) the outlet area [cm2]
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and...
1. Air enters a steady-state diffuser at T1 = 20 °C, P1 = 100 kPa and leaves at P2 = 105 kPa. You may assume an adiabatic diffuser and constant specific heats. Find T2 if: a) V1 = 10 m/s, V2 = 0 m/s b) V1 = 100 m/s, V2 = 90 m/s c) V1 = 500 m/s, V2 = 490 m/s d) V1 = 1000 m/s, V2 = 990 m/s
Water vapor at 800 lbf/in.2, 1000 F enters a turbine operating at steady state and expands...
Water vapor at 800 lbf/in.2, 1000 F enters a turbine operating at steady state and expands adiabatically to 2 lbf/ in.2, developing work at a rate of 490 Btu per lb of vapor flowing. Determine the condition at the turbine exit: two- phase liquid–vapor or superheated vapor? Also, evaluate the isentropic turbine efficiency. Kinetic and potential energy effects are negligible.
1) At 24 C the vapor pressure of water is 3 kPa. The vapor pressure of...
1) At 24 C the vapor pressure of water is 3 kPa. The vapor pressure of water over a sample is 2 kPa, what is the water activity of the sample? 2) The water activity above a saturated NaCl solution is 0.75. If a sample is enclosed in a jar with the NaCl solution and equilibrium is achieved, what is the water activity of the sample? NaCl and the sample are in separate containers within the jar.
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric...
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric flow rate of 3 m3/s and expands adiabatically to an exit state of 1 bar, 160°C. Kinetic and potential energy effects are negligible. Determine for the turbine: (a) the power developed, in kW. (b) the rate of entropy production, in kW/K. (c) the percent isentropic turbine efficiency.
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric...
Water vapor at 5 bar, 320°C enters a turbine operating at steady state with a volumetric flow rate of 3 m3/s and expands adiabatically to an exit state of 1 bar, 200°C. Kinetic and potential energy effects are negligible. Determine for the turbine: (a) the power developed, in kW. (b) the rate of entropy production, in kW/K. (c) the percent isentropic turbine efficiency.
Water vapor enters a turbine operating at steady state at 480°C, 90 bar, with a velocity...
Water vapor enters a turbine operating at steady state at 480°C, 90 bar, with a velocity of 247 m/s, and expands adiabatically to the exit, where it is saturated vapor at 12 bar, with a velocity of 113 m/s. The exit diameter is 0.22 m. Determine the power developed by the turbine, in kW.
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to...
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 2.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power developed by the turbine, in kW.
A regenerative Rankine cycle operates with inlet conditions of 800°C and 5MPa and exhausts to a...
A regenerative Rankine cycle operates with inlet conditions of 800°C and 5MPa and exhausts to a pressure of 10kPa. A single open-feedwater heater is used with an extraction pressure of 0.8 MPa. Assume the exit states of the condenser and the feedwater heater are both saturated liquids. The turbine and pump isentropic efficiencies are 100%. Draw the T-s diagram and determine the thermal efficiency for the cycle and the total turbine work per unit boiler mass flow rate (kJ/kg) Repeat...
The vapor pressure of water at 32 degrees C is 4.76 kPa. A glass of water...
The vapor pressure of water at 32 degrees C is 4.76 kPa. A glass of water in sealed in a a 1.00L container filled with air at 32 degree C. After the water comes to equilibrium with the air in the container, the total pressure is 1 bar and there is 500 g of liquid water in the glass. a. What will be the partial pressure of water vapor in the container? b. If 35.0 g of ethylene glycol is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT