Question

In: Advanced Math

Let a and b be integers which are not both zero. (a) If c is an...

Let a and b be integers which are not both zero.

(a) If c is an integer such that there exist integers x and y with ax+by = c, prove that gcd(a, b) | c.

(b) If there exist integers x and y such that ax + by = 1, explain why gcd(a, b) = 1.

(c) Let d = gcd(a,b), and write a = da′ and b = db′ for some a′,b′ ∈ Z. Prove that gcd(a′,b′) = 1.

Solutions

Expert Solution


Related Solutions

Theorem 3.4. Let a and b be integers, not both zero, and suppose that b =...
Theorem 3.4. Let a and b be integers, not both zero, and suppose that b = aq + r for some integers q and r. Then gcd(b, a) = gcd(a, r). a) Suppose that for some integer k > d, k | a and k | r. Show that k | b also. Deduce that k is a common divisor of b and a. b) Explain how part (a) contradicts the assumption that d = gcd(b, a).
a.) Prove the following: Lemma. Let a and b be integers. If both a and b...
a.) Prove the following: Lemma. Let a and b be integers. If both a and b have the form 4k+1 (where k is an integer), then ab also has the form 4k+1. b.)The lemma from part a generalizes two products of integers of the form 4k+1. State and prove the generalized lemma. c.) Prove that any natural number of the form 4k+3 has a prime factor of the form 4k+3.
Let S{a, b, c, d} be a set of four positive integers. If pairs of distinct...
Let S{a, b, c, d} be a set of four positive integers. If pairs of distinct elements of S are added, the following six sums are obtained:5,10, 11,13,14,19. Determine the values of a, b, c, and d. (There are two possibilities. )
Let a and b be integers and consider (a) and (b) the ideals they generate. Describe...
Let a and b be integers and consider (a) and (b) the ideals they generate. Describe the intersection of (a) and (b), the product of (a) and (b), the sum of (a) and (b) and the Ideal quotient (aZ:bZ).
Let a and b be integers. Recall that a pair of Bezout coefficients for a and...
Let a and b be integers. Recall that a pair of Bezout coefficients for a and b is a pair of integers m, n ∈ Z such that ma + nb = (a, b). Prove that, for any fixed pair of integers a and b, there are infinitely many pairs of Bezout coefficients.
Let a,b be an element in the integers with a greater or equal to 1. Then...
Let a,b be an element in the integers with a greater or equal to 1. Then there exist unique q, r in the integers such that b=aq+r where z less than or equal r less than or equal a+(z-1). Prove the Theorem.
Let P be the uniform probability on the integers from 1 to 99. Let B be...
Let P be the uniform probability on the integers from 1 to 99. Let B be the subset of numbers which have the digit 3. Let A be the subset of even numbers. What is P(A), P(B)? What is P(A|B)? P(B|A)?
Let a and b be positive integers, and let d be their greatest common divisor. Prove...
Let a and b be positive integers, and let d be their greatest common divisor. Prove that there are infinitely many integers x and y such that ax+by = d. Next, given one particular solution x0 and y0 of this equation, show how to find all the solutions.
(6ptseach)Let A={a,b,c},B={b,c,d},C ={b,c,e}. (a) Explicitly find (i) A∪(B∩C), (ii)(A∪B)∩C, and (iii)(A∪B)∩(A∪C). (iv)Which of these sets are...
(6ptseach)Let A={a,b,c},B={b,c,d},C ={b,c,e}. (a) Explicitly find (i) A∪(B∩C), (ii)(A∪B)∩C, and (iii)(A∪B)∩(A∪C). (iv)Which of these sets are equal? (b) Explicitly find (i) A∩(B∪C), (ii)(A∩B)∪C, and (iii)(A∩B)∪(A∩C). (iv)Which of these sets are equal? (c) Explicitly find (i)(A−B)−C and (ii) A−(B−C). (iii)Are these sets equal?
Three positive integers (a, b, c) with a<b<c are called a Pythagorean triple if the sum...
Three positive integers (a, b, c) with a<b<c are called a Pythagorean triple if the sum of the square of a and the square of b is equal to the square of c. Write a program that prints all Pythagorean triples (one in a line) with a, b, and c all smaller than 1000, as well the total number of such triples in the end. Arrays are not allowed to appear in your code. Hint: user nested loops (Can you...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT