Question

In: Advanced Math

8.Let a and b be integers and d a positive integer. (a) Prove that if d...

8.Let a and b be integers and d a positive integer.
(a) Prove that if d divides a and d divides b, then d divides both a + b and a − b.
(b) Is the converse of the above true? If so, prove it. If not, give a specific example of a, b, d showing
that the converse is false.

9. Let a, b, c, m, n be integers. Prove that if a divides each of b and c, then a divides nb + mc.

Solutions

Expert Solution

This is the required solution for the given question no 8 (part a,b,c) .Hope it will help you . Please give a Thumbs up .Thank you.


Related Solutions

Let a and b be positive integers, and let d be their greatest common divisor. Prove...
Let a and b be positive integers, and let d be their greatest common divisor. Prove that there are infinitely many integers x and y such that ax+by = d. Next, given one particular solution x0 and y0 of this equation, show how to find all the solutions.
let d be a positive integer. Prove that Q[sqrt d] = {a + b sqrt d|...
let d be a positive integer. Prove that Q[sqrt d] = {a + b sqrt d| a, b is in Q} is a field. provide explanations.
7. Let m be a fixed positive integer. (a) Prove that no two among the integers...
7. Let m be a fixed positive integer. (a) Prove that no two among the integers 0, 1, 2, . . . , m − 1 are congruent to each other modulo m. (b) Prove that every integer is congruent modulo m to one of 0, 1, 2, . . . , m − 1.
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer....
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer. (a) Assuming that A is sorted, show that in O(n) time it can be decided if A contains two distinct elements x and y such that x + y = t. (b) Use part (a) to show that the following problem, re- ferred to as the 3-Sum problem, can be solved in O(n2) time: 3-Sum Given an array A[1..n] of distinct positive integers, and...
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer....
Let A[1..n] be an array of distinct positive integers, and let t be a positive integer. (a) Assuming that A is sorted, show that in O(n) time it can be decided if A contains two distinct elements x and y such that x + y = t. (b) Use part (a) to show that the following problem, re- ferred to as the 3-Sum problem, can be solved in O(n2) time: 3-Sum Given an array A[1..n] of distinct positive integers, and...
(3) Let m be a positive integer. (a) Prove that Z/mZ is a commutative ring. (b)...
(3) Let m be a positive integer. (a) Prove that Z/mZ is a commutative ring. (b) Prove that if m is composite, then Z/mZ is not a field. (4) Let m be an odd positive integer. Prove that every integer is congruent modulo m to exactly one element in the set of even integers {0, 2, 4, 6, , . . . , 2m− 2}
Let S{a, b, c, d} be a set of four positive integers. If pairs of distinct...
Let S{a, b, c, d} be a set of four positive integers. If pairs of distinct elements of S are added, the following six sums are obtained:5,10, 11,13,14,19. Determine the values of a, b, c, and d. (There are two possibilities. )
Show that if a, b are positive integers and d = hcf(a, b), then there are...
Show that if a, b are positive integers and d = hcf(a, b), then there are positive integers s, t such that d = sa − tb.
a.) Prove the following: Lemma. Let a and b be integers. If both a and b...
a.) Prove the following: Lemma. Let a and b be integers. If both a and b have the form 4k+1 (where k is an integer), then ab also has the form 4k+1. b.)The lemma from part a generalizes two products of integers of the form 4k+1. State and prove the generalized lemma. c.) Prove that any natural number of the form 4k+3 has a prime factor of the form 4k+3.
Let t be a positive integer. Prove that, if there exists a Steiner triple system of...
Let t be a positive integer. Prove that, if there exists a Steiner triple system of index 1 having v varieties, then there exists a Steiner triple system having v^t varieties
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT