Question

In: Chemistry

Dinitrogen pentoxide (N2O5) decomposes in chloroform as a solvent to yield NO2 and O2. The decomposition...

Dinitrogen pentoxide (N2O5) decomposes in chloroform as a solvent to yield NO2 and O2. The decomposition is first order with a rate constant at 45 ∘C of 1.0×10−5s−1.

Calculate the partial pressure of O2 produced from 1.47 L of 0.605 M N2O5 solution at 45 ∘C over a period of 18.5 h if the gas is collected in a 11.4-L container. (Assume that the products do not dissolve in chloroform.)

Solutions

Expert Solution

Here we calculate the partial pressure of O2 produced from N2O5

Reaction:

2N2O5 --- > 4 NO2 + O2

Mole ration of N2O5 to O2 is 2 :1

So when two moles of N2 decomposed we get 1 mol of O2

Lets first find how many number of moles of N2O5 are decomposed.

Number of moles of N2O5 = Volume in L x molarity

= 1.47 L x 0.605 M

=0.88935 mol

Conversion of time into s

Time in s= 18.5 h x 3600 s / 1hr

= 66600 s

Since the reaction is first order and we are given its rate constant. We use integrated first law equation.

At = A exp (- kt)

Here [A]t is concentration or amount at time t, and [A] is initial amount. k and t are rate constant and time respectively.

Lets plug in…

At = 0.88935 mol x exp (- 1.0 E-5 x 66600 )

= 0.458 mol

Calculation of moles of O2

Moles of O2 produced = 0.458 mol N2O5 x 1 mol O2 / 2 mol N2O5

= 0.228 mol O2

Lets find partial pressure of O2

For this we use ideal gas law.

P = nRT/ V

P is in atm , n is mole , R is gas constant, T is temperature in K, V is volume in L

P = [0.228 x 0.08206 x 319.15/11.4 ] atm            ……..(we used temperature in K)

= 0.525 atm

So the partial pressure of O2 is 0.525 atm


Related Solutions

Dinitrogen pentoxide (N2O5) decomposes in chloroform as a solvent to yield NO2 and O2. The decomposition...
Dinitrogen pentoxide (N2O5) decomposes in chloroform as a solvent to yield NO2 and O2. The decomposition is first order with a rate constant at 45 ∘C of 1.0×10−5s−1. Calculate the partial pressure of O2 produced from 1.63 L of 0.659 M N2O5 solution at 45 ∘C over a period of 24.2 h if the gas is collected in a 12.4-L container. (Assume that the products do not dissolve in chloroform.)
Dinitrogen Pentoxide (N2O5) decomposes in chloroform as a solvent to yield NO2 and O2. The decomposition...
Dinitrogen Pentoxide (N2O5) decomposes in chloroform as a solvent to yield NO2 and O2. The decomposition is first order with a rate constatnt at 50 degrees Celcius 1.75 x 10-5 s-1. Calculate the partial pressure of O2 produce from 1.00L of 0.500 M N2O5 solution at 50 degrees celcius over a period of 18.0 hours if the gas collected in a 10.0L container. (Assume that the products do not dissolve in chloroform.)
The decomposition of n2o5 is a first order reaction. N2o5 decomposes to yield no2 and o2....
The decomposition of n2o5 is a first order reaction. N2o5 decomposes to yield no2 and o2. At 48deg C the rate constant for the reaction is 1.2x10^-5s^-1. Calculate the partial pressure of no2 produced from 1.0L of 0.700M n2o5 solution at 48deg C over a period of 22 hours if the gas is collected in a 10.0L container. Show work please.
In the reaction of gaseous N2O5 to yield NO2 gas and O2 gas as shown below...
In the reaction of gaseous N2O5 to yield NO2 gas and O2 gas as shown below the following data table is obtained: 2 N2O5 (g) → 4 NO2 (g) + O2 (g) Data Table #1 Time (sec) [N2O5] [O2] 0 0.200 M 0 300 0.182 M 0.009 M 600 0.166 M 0.017 M 900 0.152 M 0.024 M 1200 0.140 M 0.030 M 1800 0.122 M 0.039 M 2400 0.112 M 0.044 M 3000 0.108 M 0.046 M Complete the...
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction...
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction is first order in dinitrogen pentoxide and has a half-life of 2.81 h at 25 ∘C. If a 1.5-L reaction vessel initially contains 760 torr of N2O5 at 25 ∘C, what partial pressure of O2 is present in the vessel after 225 minutes?
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction...
Dinitrogen pentoxide decomposes in the gas phase to form nitrogen dioxide and oxygen gas. The reaction is first order in dinitrogen pentoxide and has a half-life of 2.81 h at 25 ∘C. If a 1.7-L reaction vessel initially contains 760 torr of N2O5 at 25 ∘C, what partial pressure of O2 is present in the vessel after 205 minutes?
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1...
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1 at a given temperature. A. Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure of 0.100 atm to rise to 0.150 atm . B. Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure of 0.100 atm to rise to 0.200 atm . C. Find...
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1...
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1 at a given temperature. 1. Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure of 0.110 atm to rise to 0.220 atm .
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1...
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1 at a given temperature. Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure of 0.100 atm to rise to 0.220 atm .
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1...
The specific rate constant for the first-order decomposition of N2O5(g) to NO2(g) and O2(g) is 7.48×10−3s−1 at a given temperature. Part A Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure of 0.100 atm to rise to 0.155 atm . Express your answer using two significant figures. t=_______ s Part B Find the length of time required for the total pressure in a system containing N2O5 at an initial pressure...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT