Question

In: Computer Science

With a detailed step-by-step process, convert the following decimal number into binary, Hexadecimal and IEEE 754...

With a detailed step-by-step process, convert the following decimal number into binary, Hexadecimal and IEEE 754 formats :

72.nn ( where nn is 80)

Solutions

Expert Solution

Part 1: convert 72.80 to binary:

Step 1: convert 72(integral part ) to binary:

Division by 2 Quotient Remainder
72/2 36 0
36/2 18 0
18/2 9 0
9/2 4 1
4/2 2 0
2/2 1 0
1/2 0 1

Now write remainder column from down to up it is a binary for 72

(72)10=(1001000)2

Step 2: Convert .80 (fractional part) to binary:

  1. Multiply the fractional decimal number by 2.
  2. Integral part is a binary number.
  3. repeat process
Multiply by 2 Result fractional part Integral part(Binary)
.80*2 1.60 .60 1
.60*2 1.20 .20 1
.20*2 0.40 .40 0
.40*2 .80 .80(Same as first stop) 0

(Note: You may stop multiplication when you get similar number)

Write integral part(Binary) column from up to down. it is a binary equivalent of decimal number

(.80)10 =(1100)2

So Binary equivalent of decimal is:

(72.80)10 =(1001000.1100)2

Part 2: convert 72.80 to Hexadecimal:

Step 1: convert 72(integral part ) to hexadecimal

Division by 16 Quotient Remainder->(hexadecimal)
72/16 4 8->8
4/16 0 4->4

Now write remainder column from down to up it is a hexadecimal for 72

(72)10=(48)16

Step 2 :Convert .80 (fractional part) to hexadecimal:

  1. Multiply the fractional decimal number by 16.
  2. Integral part is a hexadecimal number.
  3. repeat process
Multiply by 16 Result fractional part Integral part(hexadecimal)
.80*16 12.8 .8 12 -> C
.8*16 12.8 .8(Same as first stop) 12 ->C

(Note: You may stop multiplication when you get similar number)

Write integral part(hexadecimal) column from up to down. it is a hexadecimal equivalent of decimal number

(.80)10 =(CC)16

So Hexadecimal equivalent of decimal is:

(72.80)10 =(48.CC)16

Part 3: convert 72.80 to IEEE 754 format:

In IEEE 754 we have mainly 3 part

Single precision:

  1. Sign of Mantissa ( 0 represents positive 1 represents negative) (1bit)
  2. exponent (127 actual for Single precision) (8 bits)
  3. Normalised Mantissa (23 bits)

Step 1: Write binary of a decimal mumber

(72.80)10 =(1001000.1100)2

Step 2: Write binary number in a power of 2

1.0010001100 * 26 (26 because we shift decimal by 6)

(0010001100) is calles a normalised mantisa

Sign bit is 0 because number is positive.

Step 3: add 6(power of 2) in actual exponent (127)

127+6=133

Step 4: Conver 133 into binary

(133)10 =(10000101)2

Normalized mantisa is:

0010001100

Step 5 : make 23 bit Normalized mantisa by adding extra 0's

  00100011000000000000000

Step 6 :Sign bit is 0

Step 7 : Write Sign, Exponent and mantisa in their format which is the IEEE 754 format

Format is:

Sign(1bit) Exponent(8bits) Mantisa(23 bits)

(0  10000101   00100011000000000000000)

So,

(72.80)10 = (0  10000101   00100011000000000000000) in IEEE 754 format


Related Solutions

Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000...
Convert the following binary number (signed 32-bit floating point IEEE-754) into decimal. 0100 0011 0100 0000 0000 0000 0000 0000
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in...
Convert the following floating-point number (stored using IEEE floating-point standard 754) to a binary number in non-standard form. 0100_0001_1110_0010_1000_0000_0000_0000
The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754...
The number –11.375 (decimal) represented as a 32-bit floating-point binary number according to the IEEE 754 standard is
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE...
Convert 1101.11011101 x 223 to IEEE Standard 754 for single-precision floating-point binary format. Convert the IEEE Standard 754 number 11001010100011010101000000000000 to its decimal equivalent.
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
Convert the following number into 32bit IEEE 754 floating point representation. 0.000101
Problem: Convert the following binary number to decimal. 1. 110101.101 Problem: Convert the following decimal number...
Problem: Convert the following binary number to decimal. 1. 110101.101 Problem: Convert the following decimal number to fractional binary representation. 1. 103.5625
I have the following decimal value 17.25. How can i convert this to IEEE 754 32...
I have the following decimal value 17.25. How can i convert this to IEEE 754 32 bit single precision floating point and double precision?. I need to use this as a matlab function block in Simulink, therefore i cannot use the conversion of hexadecimal to IEEE 754 32 bit single precision floating point matlab script.
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and...
1. Convert 5.5 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation. 2. (4 points) Convert -7.875 to hexadecimal notation using IEEE 754 single precision. Please show your work and answer must be in hexadecimal notation.
Convert the following binary values to hexadecimal and decimal (1 pt each) Write Hex Numbers as...
Convert the following binary values to hexadecimal and decimal (1 pt each) Write Hex Numbers as 0x##(ex 0x0A, 0xFF) Binary Hexadecimal Decimal 0001-1011 0x 0000-1000 0000-0100 0000-1001 0001-1111 1001-1001 0111-1010 1100-0010 1110-0101 1000-1010 0011-0100 0001-1001 0100-0011 1111-1111 1110-0111 0001-0010 0100-1000 0100-1110 1001-0001 0110-1100 Name: Convert the following hexadecimal values to binary and decimal Write binary numbers as 0000-0000 Hexadecimal Binary Decimal 0xf1 0xac 0x56 0x6c 0x32 0x30 0x05 0x28 0xf0 0x07 0x42 0xb9 0x6d 0x2f 0x71 0x0e 0x2d 0xfb 0xba...
Convert 3/7 to IEEE 754. Convert 171.375 to IEEE754 Convert the float number 0x4024 0080 0000...
Convert 3/7 to IEEE 754. Convert 171.375 to IEEE754 Convert the float number 0x4024 0080 0000 0000 to decimal. What is the true exponent? Circle the true exponent. 0x3FAF 9000 0000 is an IEEE float number. Convert it to base 10. While doing the conversion answer two questions: What is the true exponent? What is the mantissa? Make these two values obvious by circling them.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT