Question

In: Advanced Math

solve the IVP 11/32y''+2/10y'+132/5y=6cos(3t), y(0)=0, y'(0)=0

solve the IVP

11/32y''+2/10y'+132/5y=6cos(3t), y(0)=0, y'(0)=0

Solutions

Expert Solution


Related Solutions

Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
1) . Solve the IVP: y^''+6y^'+5y=0, y(0)=1, y^' (0)=3 2. Find the general solution to each...
1) . Solve the IVP: y^''+6y^'+5y=0, y(0)=1, y^' (0)=3 2. Find the general solution to each of the following: a) y^''+2y^'+5y=e^2x b) y^''+2x/(x^2+1) y'=x c) y^''+4y=1/(sin⁡(2x)) (use variation of parameters)
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
Find the general solution and solve the IVP y''+y'-y=0, y(0)=2, y'(0)=0
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve using laplace transform y" + 3y = -48t^2e^3t ; y(0) = 2 , y(0) =...
Solve using laplace transform y" + 3y = -48t^2e^3t ; y(0) = 2 , y(0) = 1 y" + 6y' + 5y = t - tu(t-2); y(0) = 1 , y'(0) = 0
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
1. solve the IVP: xy''-y/x=lnx, on (0, inifnity), y(1)=-1, y'(1)=-2 2.solve the IVP: y''-y=(e^x)/sqrtx, y(1)=e, y'(1)=0...
1. solve the IVP: xy''-y/x=lnx, on (0, inifnity), y(1)=-1, y'(1)=-2 2.solve the IVP: y''-y=(e^x)/sqrtx, y(1)=e, y'(1)=0 3. Given that y1(x)=x is a solution of xy''-xy'+y=0 on (0, inifinity, solve the IVP: xy''-xy'+y=2 on(0,infinity), y(3)=2, y'(3)=1 14. solve the IVP: X'=( 1 2 3) X, X(0)=(0 ##################0 1 4####### -3/8 ##################0 0 1 ########1/4
solve using undetermined coefficients. y''' + 2y'' -y'-2y= 24e^-3t + 48t^2; y(0)=y'(0)=y''(0)=0
solve using undetermined coefficients. y''' + 2y'' -y'-2y= 24e^-3t + 48t^2; y(0)=y'(0)=y''(0)=0
Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0
Solve the IVP by applying the Laplace transform:y''+y=sqrt(2)*sin[sqrt(2)t]; y(0)=10, y'(0)=0
Solve the following problems: (a) y'' - 2y' + 5y = 0 with y(0) = 1...
Solve the following problems: (a) y'' - 2y' + 5y = 0 with y(0) = 1 and y'(0) = 2. (b) y(3) - 3y' + 2y = 0 with y(0) = 5, y'(0) = 6, and y''(0) = 11.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT