Question

In: Advanced Math

Solve using laplace transform y" + 3y = -48t^2e^3t ; y(0) = 2 , y(0) =...

Solve using laplace transform

y" + 3y = -48t^2e^3t ; y(0) = 2 , y(0) = 1

y" + 6y' + 5y = t - tu(t-2); y(0) = 1 , y'(0) = 0

Solutions

Expert Solution

If you have any questions please let me know

Please give me thumb up


Related Solutions

Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) =...
Solve the differential equation using the Laplace transform.   y''' + 3y''+2y' = 100e-t , y(0) = 0, y'(0) = 0, y''(0) = 0
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Use laplace transform to solve IVP 2y”+3y’+y=8e^(-2t) , y(0)=-4 , y’(0)=2
Use the Laplace transform to solve the following initial value problem: x′=12x+3y y′=−9x+e^(3t) x(0)=0, y(0)=0 Let...
Use the Laplace transform to solve the following initial value problem: x′=12x+3y y′=−9x+e^(3t) x(0)=0, y(0)=0 Let X(s)=L{x(t)}, and Y(s)=L{y(t)}. Find the expressions you obtain by taking the Laplace transform of both differential equations and solving for Y(s) and X(s): X(s)= Y(s)= Find the partial fraction decomposition of X(s)X(s) and Y(s)Y(s) and their inverse Laplace transforms to find the solution of the system of DEs: x(t) y(t)
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
y''-3y+2y=e^3t y(0)=1 y'(0)=0 laplace transformation
y''-3y+2y=e^3t y(0)=1 y'(0)=0 laplace transformation
Laplace Transform : y ' - y = e^-3t cos3t , y(0) =3 and, Show that,...
Laplace Transform : y ' - y = e^-3t cos3t , y(0) =3 and, Show that, Differential Form ? dU = Tds - Pdv , dH=Tds-Vdp , dF= -sdT-Pdv , dG= -sdT+VdP
solve the d.e. equation using Laplace inverse transform y'-y = xex, y(0)=0
solve the d.e. equation using Laplace inverse transform y'-y = xex, y(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT