Question

In: Advanced Math

Suppose that e(t) is a piecewise defined function e (t) = 0 if 0 ≤ t...

Suppose that e(t) is a piecewise defined function

e (t) = 0 if 0 ≤ t < 3

and

e(t) = 1 if 3 ≤ t

Solve

y’’+ 9y = e(t)

y(0) = 1 y’(0) = 3

Solutions

Expert Solution


Related Solutions

Use Laplace Transforms to solve the following IVPs . y′′+9y={2−t ,0} piecewise function 0≤t<2 , t≥2...
Use Laplace Transforms to solve the following IVPs . y′′+9y={2−t ,0} piecewise function 0≤t<2 , t≥2 ;y(0)=1 ,y′(0)=0
f(t) = 1- t 0<t<1 a function f(t) defined on an interval 0 < t <...
f(t) = 1- t 0<t<1 a function f(t) defined on an interval 0 < t < L is given. Find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge
Suppose that a continuous, positive random variable T has a hazard function defined by h(t) =...
Suppose that a continuous, positive random variable T has a hazard function defined by h(t) = hj when aj-1 ≤ t < aj,   j = 1, 2, …, k, where a0 = 0 and ak= ∞, a0 < a1 < … < ak   and   hj> 0, j = 1, 2, …, k. (a) Express S(t), the survivor function of T, in terms of the hj’s. (b) Express f(t), the probability density function of T, in terms of the hj’s. (c)...
What does the term piecewise mean when referring to linear functions? Is a piecewise function always...
What does the term piecewise mean when referring to linear functions? Is a piecewise function always continuous across its entire domain? Explain your answer and give an example. Give an example of a piecewise function using functional notation and state its domain
5. For each piecewise linear function, graph the function and find:     ...
5. For each piecewise linear function, graph the function and find:      2 lim x f x      2 lim x f x (a) { ? + 3 ?? ? < 2 2? + 1 ?? ? ≥ 2 (b) ?(?) = { ? − 2 ?? ? < 2 ? + 1 ?? ? ≥ 2 6. For each piecewise linear function, graph the function and find:    x...
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve....
y'' - y = e^(-t) - (2)(t)(e^(-t)) y(0)= 1 y'(0)= 2 Use Laplace Transforms to solve. Sketch the solution or use matlab to show the graph.
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Solve y''-y=e^t(2cos(t)-sin(t)) with initial condition y(0)=y'(0)=0
Prove that the function defined to be 1 on the Cantor set and 0 on the...
Prove that the function defined to be 1 on the Cantor set and 0 on the complement of the Cantor set is discontinuous at each point of the Cantor set and continuous at every point of the complement of the Cantor set.
Suppose that T (≥ 0) is a continuous random variable. Let its pdf, cdf, survival function,...
Suppose that T (≥ 0) is a continuous random variable. Let its pdf, cdf, survival function, hazard rate function, and cumulative hazard rate function be f(t), F(t), s(t), h(t), and H(t), respectively. Note that H(t) is defined by R t 0 h(u)du. a. Denote s(t), h(t), and H(t) as a function of f(t). b. Denote f(t), h(t), and H(t) as a function of s(t). c. Denote f(t), s(t), and H(t) as a function of h(t). d. Denote f(t) and s(t)...
6. The function f(t) = 0 for − 2 ≤ t < −1 −1 for −...
6. The function f(t) = 0 for − 2 ≤ t < −1 −1 for − 1 ≤ t < 0 0 for t = 0 1 for 0 ≤ t < 1 0 for 1 ≤ t ≤ 2 can be extended to be periodic of period 4. (a) Is the extended function even, odd, or neither? (b) Find the Fourier Series of the extended function.(Just write the final solution.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT