In: Statistics and Probability
Confidence interval for Population Proportion is given as below:
Confidence Interval = P ± Z* sqrt(P*(1 – P)/n)
Where, P is the sample proportion, Z is critical value, and n is sample size.
We are given
x = 44
n = 96
P = x/n = 44/96 = 0.458333333
Confidence level = 99%
Critical Z value = 2.5758
(by using z-table)
Confidence Interval = P ± Z* sqrt(P*(1 – P)/n)
Confidence Interval = 0.458333333 ± 2.5758* sqrt(0.458333333*(1 – 0.458333333)/96)
Confidence Interval = 0.458333333 ± 2.5758*0.0509
Confidence Interval = 0.458333333 ± 0.1310
Lower limit = 0.458333333 - 0.1310 = 0.3273
Upper limit = 0.458333333 + 0.1310 = 0.5893
Confidence interval = (0.3273, 0.5893)