In: Statistics and Probability
| Do a two-sample test for equality of means assuming unequal variances. Calculate the p-value using Excel. | 
| (a-1) | 
 Comparison of GPA for randomly chosen college juniors and seniors:  | 
| x⎯⎯1x¯1 = 4, s1 = .20, n1 = 15, x⎯⎯2x¯2 = 4.25, s2 = .30, n2 = 15, α = .025, left-tailed test. | |
| 
 (Negative values should be indicated by a minus sign. Round down your d.f. answer to the nearest whole number and other answers to 4 decimal places.)  | 
| d.f. | |
| t-calculated | |
| p-value | |
| (a-2) | Based on the above data choose the correct decision. | ||||
  | 
| (b-1) | 
 Comparison of average commute miles for randomly chosen students at two community colleges:  | 
| x⎯⎯1x¯1 = 17, s1 = 5, n1 = 22, x⎯⎯2x¯2 = 21, s2 = 7, n2 = 19, α = .05, two-tailed test. | |
| 
 (Negative values should be indicated by a minus sign. Round down your d.f. answer to the nearest whole number and other answers to 4 decimal places.)  | 
| d.f. | |
| t-calculated | |
| p-value | 
| (b-2) | Based on the above data choose the correct decision. | ||||
  | 
| (c-1) | 
 Comparison of credits at time of graduation for randomly chosen accounting and economics students:  | 
| x⎯⎯1x¯1 = 141, s1 = 2.8, n1 = 12, x⎯⎯2x¯2 = 138, s2 = 2.7, n2 = 17, α = .05, right-tailed test. | |
| 
 (Negative values should be indicated by a minus sign. Round down your d.f. answer to the nearest whole number and other answers to 4 decimal places.)  | 
| d.f. | |
| t-calculated | |
| p-value | |
| (c-2) | Based on the above data choose the correct decision. | ||||
  | 
1)
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 <   0  
           
   
          
           
   
Level of Significance ,    α =   
0.025          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   4.00  
           
   
standard deviation of sample 1,   s1 =   
0.20          
       
size of sample 1,    n1=   15  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   4.25  
           
   
standard deviation of sample 2,   s2 =   
0.30          
       
size of sample 2,    n2=   15  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
4.0000   -   4.3   =  
-0.25  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    0.2550  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
0.0931          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
-0.2500   -   0   ) /   
0.09   =   -2.6854
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
28         
       
p-value =       
0.006019   [ excel function: =T.DIST(t stat,df)
]           
   
Conclusion:     p-value <α , Reject null
hypothesis         
           
  
-----------------------------------------------------------------------------
2)
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 ╪   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   17.00  
           
   
standard deviation of sample 1,   s1 =   
5.00          
       
size of sample 1,    n1=   22  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   21.00  
           
   
standard deviation of sample 2,   s2 =   
7.00          
       
size of sample 2,    n2=   19  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
17.0000   -   21.0   =  
-4.00  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    6.0064  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
1.8811          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
-4.0000   -   0   ) /   
1.88   =   -2.1264
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
39          
       
p-value =        0.0399
(excel function: =T.DIST.2T(t stat,df) )  
           
Conclusion:     p-value <α , Reject null
hypothesis         
           
           
       
--------------------------------------
3)
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 >   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   141.00  
           
   
standard deviation of sample 1,   s1 =   
2.80          
       
size of sample 1,    n1=   12  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   138.00  
           
   
standard deviation of sample 2,   s2 =   
2.70          
       
size of sample 2,    n2=   17  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
141.0000   -   138.0   =  
3.00  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    2.7412  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
1.0335          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (   3.0000  
-   0   ) /    1.03  
=   2.9027
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
27          
       
p-value =        0.0036
[excel function: =T.DIST.RT(t stat,df) ]  
           
Conclusion:     p-value <α , Reject null
hypothesis      
           
   
----------------------
Please revert back in case of any doubt.
Please upvote. Thanks in advance.