Question

In: Statistics and Probability

Question 1. The numbers 5, 8, 10, 7, 10, and 14 gather from a simple random...

Question 1. The numbers 5, 8, 10, 7, 10, and 14 gather from a simple random sample of a population. Determine/Calculate the point estimate of the population mean (or worded another way, what is the sample mean, x-bar,?). Determine/Calculate the point estimate of the population standard deviation (or worded another way, what is the sample standard deviation, s,?).

Question 2. A population has a mean of 200 dollars earned a day and a standard deviation of 50 dollars a day. Suppose a simple random sample was taken of 100 people (note: n > 30 so we can assume standard distribution) and we used x-bar (sample mean) to estimate mu (population mean). What is the probability that the sample mean will be within +/- 5 of the population mean? What is the probability that the sample mean will be within +/- 10 of the population mean?

Question 3. A population proportion was determined to be 0.40. A simple random sample was taken of 200 people will be taken and the sample proportion, p-bar, will be used to estimate the population proportion (which we already know is 0.40). What is the probability that the sample proportion (p-bar) will be within +/- 0.03 of the population proportion? What is the probability that the sample proportion (p-bar) will be within +/- 0.05 of the population proportion?

Solutions

Expert Solution

1)

X (X - X̄)²
5 16.00
8 1.00
10 1.00
7 4.00
10 1.00
14

25.00

X (X - X̄)²
total sum 54 48.00
n 6 6

mean =    ΣX/n =    54.000   /   6   =   9.0000
                            
sample std dev =   √ [ Σ(X - X̄)²/(n-1)] =   √   (48/5)   =       3.0984

..............

2)

µ =    200                                  
σ =    50                                  
n=   100     

for +-5
we need to calculate probability for ,                                      
195   ≤ X ≤    205                              
X1 =    195   ,    X2 =   205                      
                                      
Z1 =   (X1 - µ )/(σ/√n) = (   195   -   200   ) / (   50   / √   100   ) =   -1.00
Z2 =   (X2 - µ )/(σ/√n) = (   205   -   200   ) / (   50   / √   100   ) =   1.00
                                      
P (   195   < X <    205   ) =    P (    -1.0   < Z <    1.0   )   
                                      
= P ( Z <    1.00   ) - P ( Z <   -1.00   ) =    0.84134   -    0.15866   =    0.6827  
excel formula for probability from z score is =NORMSDIST(Z)          

..............   
for +- 10

we need to calculate probability for ,                                      
190   ≤ X ≤    210                              
X1 =    190   ,    X2 =   210                      
                                      
Z1 =   (X1 - µ )/(σ/√n) = (   190   -   200   ) / (   50   / √   100   ) =   -2.00
Z2 =   (X2 - µ )/(σ/√n) = (   210   -   200   ) / (   50   / √   100   ) =   2.00
                                      
P (   190   < X <    210   ) =    P (    -2.0   < Z <    2.0   )   
                                      
= P ( Z <    2.00   ) - P ( Z <   -2.00   ) =    0.97725   -    0.02275   =    0.9545  
excel formula for probability from z score is =NORMSDIST(Z)                                      
.................

3)

for +-0.03

population proportion ,p=   0.4                      
n=   200                      
                          
std error , SE = √( p(1-p)/n ) =    0.0346                      
                          
we need to compute probability for                           
0.37   < p̂ <   0.43                  
                          
Z1 =( p̂1 - p )/SE= (   0.37   -   0.4   ) /    0.0346   =   -0.866
Z2 =( p̂2 - p )/SE= (   0.43   -   0.4   ) /    0.0346   =   0.866
P(   0.37   < p̂ <   0.43   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    -0.866   < Z <   0.866   )          
                                                  
= P ( Z <   0.866   ) - P (    -0.866   ) =    0.8068   -   0.193   =   0.6135             

.........

for +- 0.05

we need to compute probability for                           
0.35   < p̂ <   0.45                  
                          
Z1 =( p̂1 - p )/SE= (   0.35   -   0.4   ) /    0.0346   =   -1.443
Z2 =( p̂2 - p )/SE= (   0.45   -   0.4   ) /    0.0346   =   1.443
P(   0.35   < p̂ <   0.45   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    -1.443   < Z <   1.443   )  
                                          
= P ( Z <   1.443   ) - P (    -1.443   ) =    0.9255   -   0.074   =   0.8511      

.......................

Please revert back in case of any doubt.

Please upvote. Thanks in advance.


Related Solutions

A simple random sample of 10 pages from a dictionary is obtained. The numbers of words...
A simple random sample of 10 pages from a dictionary is obtained. The numbers of words defined on those pages are​ found, with the results n=10​, x overbarx=66.1 ​words, s=16.3 words. Given that this dictionary has 1454 pages with defined​ words, the claim that there are more than​ 70,000 defined words is equivalent to the claim that the mean number of words per page is greater than 48.1 words. Use a 0.10 significance level to test the claim that the...
A simple random sample of 10 pages from a dictionary is obtained. The numbers of words...
A simple random sample of 10 pages from a dictionary is obtained. The numbers of words defined on those pages are​ found, with the results n=10​, x=57.8 ​words, s=16.4 words. Given that this dictionary has 1463 pages with defined​ words, the claim that there are more than​ 70,000 defined words is equivalent to the claim that the mean number of words per page is greater than 47.8 words. Use a 0.01 significance level to test the claim that the mean...
1-Consider the below data for ALL PARTS of this question: 4 2 5 7 8 14...
1-Consider the below data for ALL PARTS of this question: 4 2 5 7 8 14 1   5 23 17 What is the sample MEAN? ------------------------------------ Note: Enter X.X AT LEAST ONE DIGIT BEFORE THE DECIMAL, ONE AFTER and round up AFTER all calculations. Thus, 7 is entered as 7.0; 3.562 is entered as 3.6; 0.3750 is entered as 0.4; 17.351 is entered as 17.4 2-Consider the below data for ALL PARTS of this question: 4 2 5 7 8...
3, 7, 8, 5, 6, 4, 9, 10, 7, 8, 6, 5 Using the previous question...
3, 7, 8, 5, 6, 4, 9, 10, 7, 8, 6, 5 Using the previous question 's scores, If three points were added to every score in this distribution, what would be the new mean? If three points were added to every score in this distribution, what would be the new standard deviation. Remember, you have already calculated population standard deviation in a previous problem. This problem requires two answers.
Make a C++ program that outputs these following numbers: 10 5 9 10 8 15 7...
Make a C++ program that outputs these following numbers: 10 5 9 10 8 15 7 20 6 25 Please do not use functions. Only use while loop. Thank you :)
Match No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14...
Match No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Player A 8 42 56 68 91 123 12 46 57 137 5 80 14 10 19 Player B 38 44 46 59 57 61 48 42 51 39 58 41 55 45 68 1. For the given data set representing the runs scored by two players in last 15 matches, conduct the following analysis: i. Which average you will use to summarize...
Periods ​1% ​2% ​3% ​4% ​5% ​6% ​7% ​8% ​9% ​10% ​12% ​14% ​15% ​16% ​18%...
Periods ​1% ​2% ​3% ​4% ​5% ​6% ​7% ​8% ​9% ​10% ​12% ​14% ​15% ​16% ​18% ​20% 1 0.990 0.980 0.971 0.962 0.952 0.943 0.935 0.926 0.917 0.909 0.893 0.877 0.870 0.862 0.847 0.833 2 0.980 0.961 0.943 0.925 0.907 0.890 0.873 0.857 0.842 0.826 0.797 0.769 0.756 0.743 0.718 0.694 3 0.971 0.942 0.915 0.889 0.864 0.840 0.816 0.794 0.772 0.751 0.712 0.675 0.658 0.641 0.609 0.579 4 0.961 0.924 0.888 0.855 0.823 0.792 0.763 0.735 0.708 0.683 0.636...
Post Position 1 2 3 4 5 6 7 8 9 10 Wins 19 14 11...
Post Position 1 2 3 4 5 6 7 8 9 10 Wins 19 14 11 15 15 7 8 12 5 11 The table below lists the frequency of wins for different post positions in the Kentucky Derby horse race. Use a 0.05 significance level to test the claim that the likelihood of winning is the same for the different post positions. What is the critical value (the X2 value)? [Round to the nearest thousandths place]
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Number of Aides Absent 5 8 11 15 4 2 7 1 4 6 14 19 3 5 8 In which of the following ranges you can find the Upper Control Limit of the control chart? 0.1427 0.1536 0.1677 Not computable with information available In which of the following ranges you can find the Lower Control Limit of the control chart? Does not exit...
student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...
student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Test score 67 67 87 89 87 77 73 74 68 72 58 98 98 70 77 Above we have the final averages of the last stats and I want to know if the class average falls within the boundaries of all my statistics classes for the past 20 years. Find the sample size, mean, and standard deviation of the data above (Table 1)....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT