Question

In: Mechanical Engineering

Engine oil (raffinate) with a flow rate of 5 kg/s will be cooled from 60°C to...

Engine oil (raffinate) with a flow rate of 5 kg/s will be cooled from 60°C to 40°C by sea water at 20°C in a double-pipe heat exchanger. The water flows through the inner tube, whose outlet is heated to 30°C. The inner tube outside and inside diameters are do = 1.315 in. (= 0.0334 m) and di = 1.049 in. (= 0.02664 m), respectively. For the annulus, Do = 4.5 in. (= 0.1143 m) and Di = 4.206 in. (= 0.10226 m). The length of the hairpin is fixed at 3 m. The wall temperature is 35°C. The number of the tubes in the annulus is 3. The thermal conductivity of the tube wall is 43 W/m ? K. Calculate: a. The heat transfer coefficient in the annulus b. The overall heat transfer coefficient c. The pressure drop in the annulus and inner tube (only straight sections will be considered) d. What is your decision as an engineer? How can you improve the design?

Solutions

Expert Solution


Related Solutions

1. Water at a flow rate of = 0.25 kg/s is cooled from 70 C to...
1. Water at a flow rate of = 0.25 kg/s is cooled from 70 C to 30 c by passing it through a thick-walled tube of internal diameter of Di =50 mm and an external diameter of D = 60 mm. Hot Water is cooled by blowing cold air at T? = 15 C in cross flow over the tube. Velocity of the air over the tube is 20 m/s. Evaluating the water properties at 325 K from Table A.6...
Refridgerant-134a with a flow rate of 0.12 kg/s is cooled to 40 degrees C at constant...
Refridgerant-134a with a flow rate of 0.12 kg/s is cooled to 40 degrees C at constant pressure in a condenser by using cooling water. Initially the refrigerant is at 1,200 kpa and 50 degrees C. Estimate the heat removed by the cooling water.
1. Engine oil (cp = 2100 J/kg-°C) is to be heated from 20 °C to 60...
1. Engine oil (cp = 2100 J/kg-°C) is to be heated from 20 °C to 60 °C at a rate of 0.3 kg/s in a 2-cmdiameter thin-walled copper tube by condensing steam outside at a temperature of 130 °C (hfg = 2174 kJ/kg). a. For an overall heat transfer coefficient of 650 W/m2 -°C, determine the rate of heat transfer and the length of tube required to achieve it. Determine also the rate of steam condensation, in kgsteam/sec. (Ans: 25.2...
An oil cooler for a large diesel engine is to cool engine oil from 60 to...
An oil cooler for a large diesel engine is to cool engine oil from 60 to 45 °C, using seawater at an inlet temperature of 20 °C with a temperature rise of 15 °C. The design heat load is 140 kW, and the mean overall heat transfer coefficient based on the outer surface area of the tubes us 70 W/m2°C. Calculate the heat transfer surface area for single pass (a)- counter flow and (b)- parallel flow arrangements.
Bananas are to be cooled from 28°C to 12°C at a rate of 1140 kg/h by...
Bananas are to be cooled from 28°C to 12°C at a rate of 1140 kg/h by a refrigerator that operates on a vapor-compression refrigeration cycle. The power input to the refrigerator is 9.8 kW. Determine (a) the rate of heat absorbed from the bananas, in kJ/h, and the COP, (b) the minimum power input to the refrigerator, and (c) the second-law efficiency and the exergy destruction for the cycle. The specific heat of bananas above freezing is 3.35 kJ/kg·°C.
The air mass flow rate of a jet engine is 10 kg/s. The stagnation enthalpy at...
The air mass flow rate of a jet engine is 10 kg/s. The stagnation enthalpy at the exit of the turbine is 918 kJ/kg and the excess air is 4.5. (a) What should be the mass flow rate of fuel injected in the afterburner, such that the stagnation enthalpy at the end of the afterburner is 1700 kJ/kg? (b) What is the excess air in the afterburner? (c) What is the maximum temperature in the afterburner?
100 kg/hr of aqueous mixture containing 74 %wt of sucrose is cooled from 60 ˚C to...
100 kg/hr of aqueous mixture containing 74 %wt of sucrose is cooled from 60 ˚C to 20 ˚C. Due to the decrease in temperature, some of the sugar precipitates out from the mixture as crystals and are subsequently removed via a separator unit.  In the separation of the crystals, for every 1 kg of crystals removed, 0.05 kg of the aqueous mixture will be removed together with the crystals.  Calculate the mass flow rate of the remaining saturated aqueous solution (in kg/hr)....
A double-pipe heat exchanger is designed as an engine oil cooler. The flow rate of oil...
A double-pipe heat exchanger is designed as an engine oil cooler. The flow rate of oil is 5 kg/s, and it will be cooled from 60°C to 40°C through annulus (ID = 0.10226 m, OD = 0.1143 m). Sea water flows through the tubes (ID = 0.02664 m, OD = 0.03340 m) and is heated from 10°C to 30°C. The number of bare tubes in the annulus is 3, and the length of the hairpin is 3 m. Assume that...
a compressor is cooled by an oil which is flowing at 0.7kg/s .The oil temperuture increases...
a compressor is cooled by an oil which is flowing at 0.7kg/s .The oil temperuture increases throught the compressore by 45 c .Air enrers the compressor at 20 C and 1 bar,and it leaves the compressor at 7 bar , The air volumetric flow rate is 0.5m2/s The compressor is running at 115Kw power ,the specific heat of oil us 2200j/kgk,the specific heat of air is 1 kj/kgk the air specific heat ratio is 1.4 and the gas constrant is...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counter flow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: Rf i...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT