Question

In: Mechanical Engineering

1. Engine oil (cp = 2100 J/kg-°C) is to be heated from 20 °C to 60...

1. Engine oil (cp = 2100 J/kg-°C) is to be heated from 20 °C to 60 °C at a rate of 0.3 kg/s in a 2-cmdiameter thin-walled copper tube by condensing steam outside at a temperature of 130 °C (hfg = 2174 kJ/kg).

a. For an overall heat transfer coefficient of 650 W/m2 -°C, determine the rate of heat transfer and the length of tube required to achieve it. Determine also the rate of steam condensation, in kgsteam/sec. (Ans: 25.2 kW; 7.0 m)

b. What would the tube length have to be if we wanted to heat the oil to 100 °C in the same 2-cm diameter tube and at the same flow rate? How about heating to 120 °C?

Solutions

Expert Solution


Related Solutions

Engine oil (raffinate) with a flow rate of 5 kg/s will be cooled from 60°C to...
Engine oil (raffinate) with a flow rate of 5 kg/s will be cooled from 60°C to 40°C by sea water at 20°C in a double-pipe heat exchanger. The water flows through the inner tube, whose outlet is heated to 30°C. The inner tube outside and inside diameters are do = 1.315 in. (= 0.0334 m) and di = 1.049 in. (= 0.02664 m), respectively. For the annulus, Do = 4.5 in. (= 0.1143 m) and Di = 4.206 in. (=...
An oil cooler for a large diesel engine is to cool engine oil from 60 to...
An oil cooler for a large diesel engine is to cool engine oil from 60 to 45 °C, using seawater at an inlet temperature of 20 °C with a temperature rise of 15 °C. The design heat load is 140 kW, and the mean overall heat transfer coefficient based on the outer surface area of the tubes us 70 W/m2°C. Calculate the heat transfer surface area for single pass (a)- counter flow and (b)- parallel flow arrangements.
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counter flow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: Rf i...
Water flowing at a rate of 0.03 kg/s is heated from 20 to 40°C in a...
Water flowing at a rate of 0.03 kg/s is heated from 20 to 40°C in a horizontal pipe (inside diameter = 3 cm). The inside pipe surface temperature is 70°C. Estimate the convective heat transfer coefficient if the pipe is 1 m long. Assume forced convection conditions.  Ts is not held constant! Properties of Water 20°C 30°C 40°C ρ (kg/m3) 998.2 995.7 992.2 k (W/mK) 0.597 0.615 0.633 μ (Pa s) 993.414 x 10-6 792.377 x 10-6 658.026 x 10-6 Cp...
27. 3.5 kg of water (c=4189 J/(kgxK)) is heated from T1= 14 degrees to T2= 21.5...
27. 3.5 kg of water (c=4189 J/(kgxK)) is heated from T1= 14 degrees to T2= 21.5 degrees. Input an expression for the heat transferred to the water, Q. Calculate the value of heat transferred to the water Q in joules, using the expression from part (a). To the heated water 0.5 kg of water at T3= 20 degrees is added. What is the final temperature of the water, in kelvin
A stainless steel ball (? = 8055 kg/m3 , CP = 480 J/Kg? K ) of...
A stainless steel ball (? = 8055 kg/m3 , CP = 480 J/Kg? K ) of diameter D = 15cm is removed from the oven at a uniform temperature of 350 Degrees C. The ball is then subjected to the flow of air at 1 atm pressure and 30 degrees C with a velocity of 6m/s. The surface temperature of the ball eventually drops to 250 degrees 250 degrees C. Determine the average convection heat transfer coefficient during this cooling...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 225 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 835 g of water at 14.0 ∘C ? Express your answer using three significant figures.
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. Part A What will be the equilibrium temperature when a 275 g block of copper at 245 ∘C is placed in a 135 g aluminum calorimeter cup containing 855 g of water at 15.0 ∘C? Express your answer using three significant figures.' T=  ∘C
3 Kg mass of water is heated to a temperature of 99.5 C at 1 bar...
3 Kg mass of water is heated to a temperature of 99.5 C at 1 bar of pressure. It is slowly poured into a heavily insulated beaker containing 7.5 Kg of water at a temperature and pressure of 4 C, 1 bar, respectively. The specific heat of the water, an incompressible material is, c = 4.1 KJ/(Kg K). The beaker can be considered to be an adiabatic system. The two water mass’ reach an equilibrium temperature. There is no kinetic...
1000 L/h of oil is heated from 40C to 70 C in a 3 cm ID...
1000 L/h of oil is heated from 40C to 70 C in a 3 cm ID heated copper tube. The inner surface of the tube is maintained at 100 C. Since the temperature dependencies of the fluid are not given, the properties will be assumed constant. Assume the viscosity ratio equal one. The following physical property data are available for the oil. What is the length of the tube? ?? = 2090?/?? ? ? = 880 ??/?3 ? = 0.00062...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT