Question

In: Mechanical Engineering

The air mass flow rate of a jet engine is 10 kg/s. The stagnation enthalpy at...

The air mass flow rate of a jet engine is 10 kg/s. The stagnation enthalpy at the exit of the turbine is 918 kJ/kg and the excess air is 4.5.

(a) What should be the mass flow rate of fuel injected in the afterburner, such that the stagnation enthalpy at the end of the afterburner is 1700 kJ/kg?

(b) What is the excess air in the afterburner?

(c) What is the maximum temperature in the afterburner?

Solutions

Expert Solution


Related Solutions

Given: • Stagnation-to-Stagnation pressure ratio P02/P01 = 3.0 • Mass flow rate m= 0.8 kg •...
Given: • Stagnation-to-Stagnation pressure ratio P02/P01 = 3.0 • Mass flow rate m= 0.8 kg • Inlet stagnation conditions of To1 = 295 K and Po1 = 100 kPa • Tip speed U2 < 500 m/s • Inlet hub radius d1h ≥ 0.04 m • Isentropic efficiency ηisen ≥ 80% Calculate Hydraulic Pump Power and Shaft Pump Power ?
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters...
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters the compressor at state 1 with Patm =1 atm and Tamb = 20°C. The compressor has a pressure ratio of 7.5 and an efficiency ?c = 0.85. Air enters the combustor and is heated to a temperature TH = 1250°C. The turbine has an efficiency of ?t,1 = 0.87. The air leaving the turbine enters the steam boiler where it transfers heat to the...
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s...
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 250 m/s. Neglecting potential energy effects and modeling air as an ideal gas with constant cp = 1.008 kJ/kg · K, determine: (a) the velocity of the air at the...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct with side of 0.15m, the hot air enters at 103 oC and after a distance of 5m, cools to 85 oC. The heat transfer coefficient between the duct outer surface and the ambient air (Tair = 0 oC) is 6 W/m2 K. Calculate the heat transfer coefficient between hot air and duct inner wall. Air Cp = 1.011 KJ/kg K; air k = 0.0306...
Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle...
Air passes through a jet engine nozzle operating at steady state. The flow at the nozzle inlet has a temperature of 900° F. The nozzle inlet has an area of 5 ft2. The flow at the nozzle outlet has a temperature of 875° F, a specific volume of 90 ft3/lb, and a velocity of 600 ft/s. The nozzle outlet has an area of 2 ft2. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats...
Engine oil (raffinate) with a flow rate of 5 kg/s will be cooled from 60°C to...
Engine oil (raffinate) with a flow rate of 5 kg/s will be cooled from 60°C to 40°C by sea water at 20°C in a double-pipe heat exchanger. The water flows through the inner tube, whose outlet is heated to 30°C. The inner tube outside and inside diameters are do = 1.315 in. (= 0.0334 m) and di = 1.049 in. (= 0.02664 m), respectively. For the annulus, Do = 4.5 in. (= 0.1143 m) and Di = 4.206 in. (=...
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with...
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.92. The steam enters at 3 MPa and 400 C and leaves at 30 kPa. Determine how much power the turbine is producing. Express your result in kW. (Sol: 1649 kW)
Ethane gas (C2H6) is burned with air. The fuel flow rate is 0.1 kg/s and the...
Ethane gas (C2H6) is burned with air. The fuel flow rate is 0.1 kg/s and the air flowrate is 2.2 kg/s. Ethane’s enthalpy of formation is -84,680 kJ/kmol. Determine: The equivalence ratio Ethane’s lower heating value by deriving it from enthalpy of formation data. The heat release rate, in kW. The mass fraction of oxygen in the products. The mass of CO2 emitted per 1000 hours of operation. The mass of fuel burned per 1000 hours of operation. The adiabatic...
Isooctane is supplied to a four-cylinder spark-ignition engine at 2 g/s. Calculate the air flow rate...
Isooctane is supplied to a four-cylinder spark-ignition engine at 2 g/s. Calculate the air flow rate for stoichiometric combustion. If the engine is operating at 1500 rev/min, estimate the mass of fuel and air entering each cylinder per cycle. The engine displaced volume is 2.4 liters. What is the volumetric efficiency?
Nitrogen (N2), at 300 K, 1 bar with a mass flow rate of 1 kg/s enters...
Nitrogen (N2), at 300 K, 1 bar with a mass flow rate of 1 kg/s enters an insulated mixing chamber and mixes with carbon dioxide (CO2) entering as a separate stream at 500 K, 1 bar with a mass flow rate of 0.5 kg/s. The mixture exits at 1 bar. Assuming ideal gas behavior, for steady-state operation, determine (a) the molar analysis (i.e., the molar flow rate for each gas) of the exiting mixture, (b) the exit mixture temperature, and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT