In: Chemistry
Show that dg = -sdT + vdp is equivalent to dg = v(dp/dv)dv + (v(dp/dt)-s)dt gibbs energy equation
Given that dG = -sdt + vdp
dG = vdp - sdt
dG = (dG/dv) dv + (dG/dt) dt
= [(vdp - sdt) /dv]dv + [(vdp - sdt) /dt] dt
= v (dp/dv)dv - s (dt/dv) dv + v (dp/dt)dt - sdt
= v (dp/dv)dv - 0 + v (dp/dt)dt - sdt
= v (dp/dv)dv + v (dp/dt)dt - sdt
= v(dp/dv)dv + [ v(dp/dt)-s] dt
Therefore,
dG = v(dp/dv)dv + [ v(dp/dt)-s] dt