Question

In: Chemistry

Show that Cp = T(∂S/∂T)p and Cv = T(∂S/∂T)V

Show that Cp = T(∂S/∂T)p and Cv = T(∂S/∂T)V

Solutions

Expert Solution

ANSWER:

Heat capacity:

It is a physical property of a matter, which can be calculated by the ratio of change in heat to the change in temperature. That is:

It is of two types:

  • At constant pressure (Cp); and
  • At constant volume (Cv).

---------------------------------------------------------------------------------------------------------------------

Now,

To prove:

Proof:

From thermodynamics:

dQ = TdS

From the formula of Cp:

From both equation:

(Proved)

----------------------------------------------------------------------------------------------------------------------

And,

To prove:

Proof:

From thermodynamics:

dQ = TdS

From the formula of Cv:

From both equation:

(Proved)

----------------------------------------------------------------------------------------------------------------------


Related Solutions

Calculus dictates that (∂U/∂V) T,Ni = T(∂S/∂V)T,Ni – p = T(∂p/∂T)V,Ni – p (a) Calculate (∂U/∂V)...
Calculus dictates that (∂U/∂V) T,Ni = T(∂S/∂V)T,Ni – p = T(∂p/∂T)V,Ni – p (a) Calculate (∂U/∂V) T,N for an ideal gas [ for which p = nRT/V ] (b) Calculate (∂U/∂V) T,N for a van der Waals gas [ for which p = nRT/(V–nb) – a (n/V)2 ] (c) Give a physical explanation for the difference between the two. (Note: Since the mole number n is just the particle number N divided by Avogadro’s number, holding one constant is equivalent...
Using the relationship for internal pressure πT = T (∂P/∂T)V – P, show that for a...
Using the relationship for internal pressure πT = T (∂P/∂T)V – P, show that for a gas that obeys a truncated virial equation of state: Z = PVm/RT = 1 + B(T)/Vm, the internal pressure may be approximated as πT ≈ RT2(Vm)-2∙(ΔB/ΔT). Estimate the internal pressure at 1.0 bar and also at 10.0 bar for a hypothetical real gas at 275K given that B(T) = -28.0 cm3⋅mol-1 at 250K and -15.6 cm3⋅mol-1 at 300K for this gas.
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is...
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is an eigenvalue of p(T), then λ is an eigenvalue of T. Under the additional assumption that V is a complex vector space, and conclude that {μ | λ an eigenvalue of p(T)} = {p(λ) | λan eigenvalue of T}.
thermodynamics show whey with equations Cv can be calculated using enthalpy while Cp using the internal...
thermodynamics show whey with equations Cv can be calculated using enthalpy while Cp using the internal energy
Using logical equivalence laws, show that (((p v ~ q) ⊕ p) v ~p) ⊕ (p...
Using logical equivalence laws, show that (((p v ~ q) ⊕ p) v ~p) ⊕ (p v ~q) is equivalent to p v q. v = or, ~ = not, ⊕ = exclusive or (XOR). Please show the steps with the name of the law beside each step, thanks so much!
The differential for the Internal energy, U, at constant composition is ?U = −P?V + T?S...
The differential for the Internal energy, U, at constant composition is ?U = −P?V + T?S (a) What are the natural independent variables of U? [2] (b) Derive an expression for the change in internal energy at constant Volume starting with the above differential for the internal function, U, at constant composition. [3] (c) Using the criterion for exact differentials, write the Maxwell relation that is derived from this equation. [2] (d) Based on your answer in part (a), write...
(a) Starting from entropy as a function of pressure and volume, S(P, V), show that d...
(a) Starting from entropy as a function of pressure and volume, S(P, V), show that d S = C V T ( ∂ T ∂ P ) V d P + C P T ( ∂ T ∂ V ) P d V For a certain gas that follows the following equation of state: P(V-b) = RT Where b is a constant (b) Starting from the above relationship show that P(V-b)γ=constant for the reversible adiabatic process. Assume constant heat capacity...
Let T and S be linear transformations of a vector space V, and TS=ST (a) Show...
Let T and S be linear transformations of a vector space V, and TS=ST (a) Show that T preserves the generalized eigenspace and eigenspace of S. (b) Suppose V is a vector space on R and dimV = 4. S has a minimal polynomial of (t-2)2 (t-3)2?. What is the jordan canonical form of S. (c) Show that the characteristic polynomial of T has at most 2 distinct roots and splits completely.
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t}...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t} and B = {r, s, t, u} are events. x p q r s t u p(x) 0.15 0.25 0.2 0.15 0.1 (a) Determine what must be p(s). (b) Find p(A), p(B) and p(A∩B). (c) Determine whether A and B are independent. Explain. (d) Arer A and B mutually exclusive? Explain. (e) Does this table represent a probability istribution of any random variable? Explain.
(a) Find ​P(T<1.321) when v=22. ​(b) Find ​P(T>2.069​) when v=23. ​(c) Find ​P(−2.145<T<2.997​) when v=14. ​(d)...
(a) Find ​P(T<1.321) when v=22. ​(b) Find ​P(T>2.069​) when v=23. ​(c) Find ​P(−2.145<T<2.997​) when v=14. ​(d) Find ​P(T>−2.998) when v=7.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT