In: Chemistry
A. Show that the ideal gases following PV=nRT satisfy (dp/dv)(dv/dt)(dt/dp)=-1.
B. Show that van see waals fluids following P=(RT/V-b) - a/V^2 satisfy (dp/dv)(dv/dt)(dt/dp)=-1.
C. Use the fundamental relation, dH=TdS + VdP and Maxwell equations to show that (dH^ig/dV) = 0, which means that enthrall of ideal gases us independent of volume.
PV = nRT
P= nRT/V dP/dV= -nRT/V2
V= nRT/P dV/dT= nR/P and T= PV/nR, dT/dP= V/nR
(dP/dV)*(dV/dT)* dT/dP= - nRT*nR*V/{ V2*P*nR)= -nRT*nR*P/ { PV*VnR} , ( since PV= nRT)
=-nRV/nRV= -1
b) P= RT/(V-b)- a/V2
dP/dV= -RT/ (V-b)2 + 2a/V3 = {2a*(V-b)2 - V3RT}/ { V3*(V-b)2 } (1A)
(P+a/V2) (V-b)= RT
differentinating V with respet to T
{P+a/V2)- (V-b)*2a/V3} dV/dT= R (2A)
but P+a/V2= RT/(V-b), Eq.2A becomes RT/ (V-b)- 2a(V-b)/V3 ={ RTV3-2a(V-b)2}/ (V-b)V3 (3A)
from Eq.2A
dT/dP= (V-b)/R (4)
(dP/dV) * (dV/dT)* dT/dP={ 2a*(V-b)2 - V3RT}*R*(V-b)*V3* (V-b)}/ [ R* {RTV3- 2a(V-b)2}V3*(V-b}2] = -1
C. (dH/dT) P= Cp
dH= TdS+ VdP
(dH/dT) P= T (dS/dT)P =
(dS/dT)P= Cp/T
from maxwell Equations . (dS/dP)T= -(dV/dT)P
dH= TdS+ VdP
(dH/dP)T= V+ T*(dS/dP)T= V- T(dV/dT)P=
H =f (T,P)
dH = (dH/dT)PdT + (dH/dP)TdP= CpdT+ [ V- T(dV/dT)P]dP (2)
for ideal gas PV= RT and dV/dT= R/P and TdV/dT= RT/P= V
Eq.2 becomes
dH= CpdT+ 0
dH/dV= 0
for ideal gas