In: Statistics and Probability
a) Find the estimated regression equation to predict the repair cost of a machine from its age.
b) Interpret the slope in the estimated regression equation.
c) Find and interpret the correlation between the repair cost of a machine and its age.
d) Find the coefficient of determination, and discuss what this statistic tells you.
e) At 5% significance level, test to determine whether the age of a machine and its monthly cost of repair are linearly related.
f) Predict the average monthly repair cost of welding machines that are 120 months old.
g) Predict with 95% confidence the monthly repair cost of a welding machine that is 120 months old.
Ages X
110
113
114
134
93
141
115
115
115
142
96
139
89
93
91
109
138
83
100
137
Cost Y
655.34
753.36
785.04
886.28
685.24
952.32
649.48
677.96
866.90
1052.74
724.84
897.52
670.54
701.88
583.62
935.60
948.96
708.30
840.22
832.08
| X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 110 | 655.34 | 11.22 | 18244.18 | 452.49 | 
| 113 | 753.36 | 0.12 | 1372.78 | 12.97 | 
| 114 | 785.04 | 0.42 | 28.85 | -3.49 | 
| 134 | 886.28 | 426.42 | 9190.87 | 1979.69 | 
| 93 | 685.24 | 414.12 | 11060.94 | 2140.23 | 
| 141 | 952.32 | 764.52 | 26214.52 | 4476.78 | 
| 115 | 649.48 | 2.72 | 19861.55 | -232.54 | 
| 115 | 677.96 | 2.72 | 12645.23 | -185.54 | 
| 115 | 866.9 | 2.72 | 5850.57 | 126.21 | 
| 142 | 1052.74 | 820.82 | 68816.50 | 7515.73 | 
| 96 | 724.84 | 301.02 | 4299.56 | 1137.66 | 
| 139 | 897.52 | 657.92 | 11472.34 | 2747.35 | 
| 89 | 670.54 | 592.92 | 14369.06 | 2918.86 | 
| 93 | 701.88 | 414.12 | 7837.74 | 1801.61 | 
| 91 | 583.62 | 499.52 | 42762.52 | 4621.78 | 
| 109 | 935.6 | 18.92 | 21079.85 | -631.57 | 
| 138 | 948.96 | 607.62 | 25137.79 | 3908.23 | 
| 83 | 708.3 | 921.12 | 6742.22 | 2492.07 | 
| 100 | 840.22 | 178.22 | 2480.94 | -664.95 | 
| 137 | 832.08 | 559.32 | 1736.31 | 985.47 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 2267 | 15808.22 | 7196.55 | 311204.3 | 35599.02 | 
| mean | 113.35 | 790.41 | SSxx | SSyy | SSxy | 
a)
sample size ,   n =   20  
       
here, x̅ = Σx / n=   113.35   ,
    ȳ = Σy/n =   790.41  
          
       
SSxx =    Σ(x-x̅)² =    7196.5500  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   35599.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   35599.0  
/   7196.550   =   4.9467
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
229.7049          
          
       
so, regression line is   Ŷ =  
229.705   +   4.947  
*x
b)
for unit increase in value of variable x , variable y get increase by 4.947
c)
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.7522
there is moderate relationship between x and y
d)
R² =    (Sxy)²/(Sx.Sy) =    0.5659
56.59 % of variation in reparing cost is explained by variable ages.
e)
Ho:   ß1=   0      
   
H1:   ß1╪   0      
   
n=   20          
   
alpha =   0.05      
       
estimated std error of slope =Se(ß1) = Se/√Sxx =   
86.637   /√   7196.55   =  
1.021
          
       
t stat = estimated slope/std error =ß1 /Se(ß1) =   
4.9467   /   1.0213   =  
4.844
          
       
Degree of freedom ,df = n-2=   18  
           
p-value =    0.0001      
       
decison :    p-value<α , reject Ho  
           
reject Ho and conclude  that linear relations exists
between X and y
f)
Predicted Y at X=   120   is  
           
   
Ŷ =   229.705   +  
4.947   *   120   =  
823.306
g)
X Value=   120      
           
   
Confidence Level=   95%      
           
   
          
           
   
          
           
   
Sample Size , n=   20      
           
   
Degrees of Freedom,df=n-2 =   18  
           
       
critical t Value=tα/2 =   2.101   [excel
function: =t.inv.2t(α/2,df) ]      
           
          
           
   
X̅ =    113.35      
           
   
Σ(x-x̅)² =Sxx   7196.6      
           
   
Standard Error of the Estimate,Se=   86.637  
           
       
          
           
   
Predicted Y at X=   120   is  
           
   
Ŷ =   229.705   +  
4.947   *   120   =  
823.306
          
           
   
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =   
20.529          
           
margin of error,E=t*Std error=t* S(ŷ) =  
2.1009   *   20.5286   =  
43.1289      
          
           
   
Confidence Lower Limit=Ŷ +E =    823.306  
-   43.1289   =   780.178  
   
Confidence Upper Limit=Ŷ +E =   823.306  
+   43.1289   =   866.435