In: Statistics and Probability
a) Find the estimated regression equation to predict the repair cost of a machine from its age.
b) Interpret the slope in the estimated regression equation.
c) Find and interpret the correlation between the repair cost of a machine and its age.
d) Find the coefficient of determination, and discuss what this statistic tells you.
e) At 5% significance level, test to determine whether the age of a machine and its monthly cost of repair are linearly related.
f) Predict the average monthly repair cost of welding machines that are 120 months old.
g) Predict with 95% confidence the monthly repair cost of a welding machine that is 120 months old.
Ages X
110
113
114
134
93
141
115
115
115
142
96
139
89
93
91
109
138
83
100
137
Cost Y
655.34
753.36
785.04
886.28
685.24
952.32
649.48
677.96
866.90
1052.74
724.84
897.52
670.54
701.88
583.62
935.60
948.96
708.30
840.22
832.08
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
110 | 655.34 | 11.22 | 18244.18 | 452.49 |
113 | 753.36 | 0.12 | 1372.78 | 12.97 |
114 | 785.04 | 0.42 | 28.85 | -3.49 |
134 | 886.28 | 426.42 | 9190.87 | 1979.69 |
93 | 685.24 | 414.12 | 11060.94 | 2140.23 |
141 | 952.32 | 764.52 | 26214.52 | 4476.78 |
115 | 649.48 | 2.72 | 19861.55 | -232.54 |
115 | 677.96 | 2.72 | 12645.23 | -185.54 |
115 | 866.9 | 2.72 | 5850.57 | 126.21 |
142 | 1052.74 | 820.82 | 68816.50 | 7515.73 |
96 | 724.84 | 301.02 | 4299.56 | 1137.66 |
139 | 897.52 | 657.92 | 11472.34 | 2747.35 |
89 | 670.54 | 592.92 | 14369.06 | 2918.86 |
93 | 701.88 | 414.12 | 7837.74 | 1801.61 |
91 | 583.62 | 499.52 | 42762.52 | 4621.78 |
109 | 935.6 | 18.92 | 21079.85 | -631.57 |
138 | 948.96 | 607.62 | 25137.79 | 3908.23 |
83 | 708.3 | 921.12 | 6742.22 | 2492.07 |
100 | 840.22 | 178.22 | 2480.94 | -664.95 |
137 | 832.08 | 559.32 | 1736.31 | 985.47 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 2267 | 15808.22 | 7196.55 | 311204.3 | 35599.02 |
mean | 113.35 | 790.41 | SSxx | SSyy | SSxy |
a)
sample size , n = 20
here, x̅ = Σx / n= 113.35 ,
ȳ = Σy/n = 790.41
SSxx = Σ(x-x̅)² = 7196.5500
SSxy= Σ(x-x̅)(y-ȳ) = 35599.0
estimated slope , ß1 = SSxy/SSxx = 35599.0
/ 7196.550 = 4.9467
intercept, ß0 = y̅-ß1* x̄ =
229.7049
so, regression line is Ŷ =
229.705 + 4.947
*x
b)
for unit increase in value of variable x , variable y get increase by 4.947
c)
correlation coefficient , r = Sxy/√(Sx.Sy)
= 0.7522
there is moderate relationship between x and y
d)
R² = (Sxy)²/(Sx.Sy) = 0.5659
56.59 % of variation in reparing cost is explained by variable ages.
e)
Ho: ß1= 0
H1: ß1╪ 0
n= 20
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
86.637 /√ 7196.55 =
1.021
t stat = estimated slope/std error =ß1 /Se(ß1) =
4.9467 / 1.0213 =
4.844
Degree of freedom ,df = n-2= 18
p-value = 0.0001
decison : p-value<α , reject Ho
reject Ho and conclude that linear relations exists
between X and y
f)
Predicted Y at X= 120 is
Ŷ = 229.705 +
4.947 * 120 =
823.306
g)
X Value= 120
Confidence Level= 95%
Sample Size , n= 20
Degrees of Freedom,df=n-2 = 18
critical t Value=tα/2 = 2.101 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 113.35
Σ(x-x̅)² =Sxx 7196.6
Standard Error of the Estimate,Se= 86.637
Predicted Y at X= 120 is
Ŷ = 229.705 +
4.947 * 120 =
823.306
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
20.529
margin of error,E=t*Std error=t* S(ŷ) =
2.1009 * 20.5286 =
43.1289
Confidence Lower Limit=Ŷ +E = 823.306
- 43.1289 = 780.178
Confidence Upper Limit=Ŷ +E = 823.306
+ 43.1289 = 866.435