Question

In: Advanced Math

4) Laplace Transform and Solving second order Linear Differential Equations with Applications The Laplace transform of...

4) Laplace Transform and Solving second order Linear Differential Equations with Applications The Laplace transform of a function, transform of a derivative, transform of the second derivative, transform of an integral, table of Laplace transform for simple functions, the inverse Laplace transform, solving first order linear differential equations by the Laplace transform

Applications: a) Series RLC circuit with dc source b) Damped motion of an object in a fluid [mechanical, electromechanical] c) Forced Oscillations [mechanical, electromechanical]

You should build the theory portion of your report on what you have learned in the math courses including Mathematics 1, Applied Mathematics, Differential calculus and Integral Calculus. Any additional material you need in order to begin or complete your project must be included and discussed within the report. Special attention is paid to the consistency of the derivation of formulae and concepts in your report. Once the mathematical foundations are laid in a proper way, you need to introduce the topic you have been assigned from your program where the mathematical concepts you have explored are applied. It is important you support your derivations and conclusions by real world engineering applications

Solutions

Expert Solution


Related Solutions

3) Laplace Transform and Solving first order Linear Differential Equations with Applications The Laplace transform of...
3) Laplace Transform and Solving first order Linear Differential Equations with Applications The Laplace transform of a function, transform of a derivative, transform of the second derivative, transform of an integral, table of Laplace transform for simple functions, the inverse Laplace transform, solving first order linear differential equations by the Laplace transform Applications: a)))))) Series RL circuit with ac source [electronics]
Solving Differential Equations using Laplace Transform
  Solving Differential Equations using Laplace Transform a) y" - y' -2y = 0 y(0) = 1, y'(0) = 0 answer: y = 1/3e^2t + 2/3e^-t b) y" + y = sin2t y(0) = 2, y'(0) = 1 answer: y(t) = 2cost + 5/3 sint - 1/3sin2t c) y^4 - y = 0 y(0) = 0, y'(0) = 1, y"(0) = 0, y'''(0) = 0 answer y(t) = (sinht + sint)/2
Write the second order differential equation as a system of two linear differential equations then solve...
Write the second order differential equation as a system of two linear differential equations then solve it. y" + y' - 6y = e^-3t y(0) =0   y'(0)=0
write the theory and formulas for solving the systems of equations using the Laplace transform. Must...
write the theory and formulas for solving the systems of equations using the Laplace transform. Must contain bibliography
This is a question about Ordinary Differential Equations. For solving linear differential equations, I have seen...
This is a question about Ordinary Differential Equations. For solving linear differential equations, I have seen people use the method of integrating factors and the method of variation of parameters. Is it true that either of these 2 methods can be used to solve any linear differential equation? If so, could you show me an example where a linear differential equation is solved using both of these methods. If not, could you explain using examples as to why this is...
Solve the following constant coefficient linear differential equations using Laplace Transform (LT), Partial Fraction Expansion (PFE),...
Solve the following constant coefficient linear differential equations using Laplace Transform (LT), Partial Fraction Expansion (PFE), and Inverse Laplace Transform (ILT). You must check answers in the t-domain using the initial conditions. Note: Complex conjugate roots y ̈ (t) + 6 ̇y (t) + 13y (t) = 2 use the initial conditions y(0) = 3, ̇y(0) = 2.
A system of differential equations solved by the Laplace transform has led to the following system:...
A system of differential equations solved by the Laplace transform has led to the following system: (s-3) X(s) +6Y(s) = 3/s X(s) + (s-8)Y(s) = 0 Obtain the subsidiary equations and then apply the inverse transform to determine x (1)
PROBLEM 4 [Solving Ordinary Differential Equations]
PROBLEM 4 [Solving Ordinary Differential Equations] Solve the following ODE: \(\frac{d y}{d x}=1+\frac{x}{y} \quad y(1)=1\)a) Using Euler's method, for 1≤x≤4 and a step of 0.5 b) Using Euler's method, for  1≤x≤4 and a step of 0.25. c) Estimate your error in x-4 using the Richardson formula and provide an answer with the correct number of significant digits for y(4).
Use the Laplace transform to solve the given system of differential equations. d2x dt2 + 3...
Use the Laplace transform to solve the given system of differential equations. d2x dt2 + 3 dy dt + 3y = 0 d2x dt2 + 3y = te−t x(0) = 0, x'(0) = 4, y(0) = 0
Use the Laplace transform to solve the given system of differential equations. dx/dt + 3x +...
Use the Laplace transform to solve the given system of differential equations. dx/dt + 3x + dy/dt = 1 dx/dt − x + dy/dt − y = e^t x(0) = 0, y(0) = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT