Question

In: Math

Solve the following constant coefficient linear differential equations using Laplace Transform (LT), Partial Fraction Expansion (PFE),...

Solve the following constant coefficient linear differential equations using Laplace Transform (LT), Partial Fraction Expansion (PFE), and Inverse Laplace Transform (ILT). You must check answers in the t-domain using the initial conditions.

Note: Complex conjugate roots

y ̈ (t) + 6 ̇y (t) + 13y (t) = 2

use the initial conditions
y(0) = 3, ̇y(0) = 2.

Solutions

Expert Solution


Related Solutions

Solving Differential Equations using Laplace Transform
  Solving Differential Equations using Laplace Transform a) y" - y' -2y = 0 y(0) = 1, y'(0) = 0 answer: y = 1/3e^2t + 2/3e^-t b) y" + y = sin2t y(0) = 2, y'(0) = 1 answer: y(t) = 2cost + 5/3 sint - 1/3sin2t c) y^4 - y = 0 y(0) = 0, y'(0) = 1, y"(0) = 0, y'''(0) = 0 answer y(t) = (sinht + sint)/2
3) Laplace Transform and Solving first order Linear Differential Equations with Applications The Laplace transform of...
3) Laplace Transform and Solving first order Linear Differential Equations with Applications The Laplace transform of a function, transform of a derivative, transform of the second derivative, transform of an integral, table of Laplace transform for simple functions, the inverse Laplace transform, solving first order linear differential equations by the Laplace transform Applications: a)))))) Series RL circuit with ac source [electronics]
4) Laplace Transform and Solving second order Linear Differential Equations with Applications The Laplace transform of...
4) Laplace Transform and Solving second order Linear Differential Equations with Applications The Laplace transform of a function, transform of a derivative, transform of the second derivative, transform of an integral, table of Laplace transform for simple functions, the inverse Laplace transform, solving first order linear differential equations by the Laplace transform Applications: a) Series RLC circuit with dc source b) Damped motion of an object in a fluid [mechanical, electromechanical] c) Forced Oscillations [mechanical, electromechanical] You should build the...
I. Solve the homogeneous differential equations with the constant coefficient. a. ? ′′ + 5? ′...
I. Solve the homogeneous differential equations with the constant coefficient. a. ? ′′ + 5? ′ + 6? = 0 b. 4? ′′ − 8? ′ + 3? = 0 ? (0) = 2, ? ′ (0) = ½ II. Solve non-homogeneous differential equations with the indeterminate coefficient method. a. ?′′ − 3? ′ = 5cos(?) b. ? ′ ′ + 5? ′ + 2? ′ = 7? 3? III. Solve non-homogeneous differential equations with the parameter variation method. a....
Use the Laplace transform to solve the given system of differential equations. d2x dt2 + 3...
Use the Laplace transform to solve the given system of differential equations. d2x dt2 + 3 dy dt + 3y = 0 d2x dt2 + 3y = te−t x(0) = 0, x'(0) = 4, y(0) = 0
Use the Laplace transform to solve the given system of differential equations. dx/dt + 3x +...
Use the Laplace transform to solve the given system of differential equations. dx/dt + 3x + dy/dt = 1 dx/dt − x + dy/dt − y = e^t x(0) = 0, y(0) = 0
Use the Laplace transform to solve the given system of differential equations. d2x/dt2 + x −...
Use the Laplace transform to solve the given system of differential equations. d2x/dt2 + x − y = 0 d2y/dt2 + y − x = 0 x(0) = 0, x'(0) = −4 y(0) = 0, y'(0) = 1
3. Solve the following differential equations by using LaPlace transformation: 2x'' + 7x' + 3x =...
3. Solve the following differential equations by using LaPlace transformation: 2x'' + 7x' + 3x = 0; x(0) = 3, x'(0) = 0 x' + 2x = ?(t); x(0-) = 0 where ?(t) is a unit impulse input given in the LaPlace transform table.
A system of differential equations solved by the Laplace transform has led to the following system:...
A system of differential equations solved by the Laplace transform has led to the following system: (s-3) X(s) +6Y(s) = 3/s X(s) + (s-8)Y(s) = 0 Obtain the subsidiary equations and then apply the inverse transform to determine x (1)
Use the Laplace transform to solve the given system of differential equations. dx/dt + 2x +dy/dt=...
Use the Laplace transform to solve the given system of differential equations. dx/dt + 2x +dy/dt= 1 dx/dt− x+ dy/dt− y= e^t x(0) = 0, y(0) = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT