Question

In: Physics

A billiard ball A moving at a speed of 2.4 m / s bumps into a...

A billiard ball A moving at a speed of 2.4 m / s bumps into a billiard ball B of the same mass, which
are at rest. After the impact, A moves at a speed of 1.4 m / s in a direction that forms the angle 50 ◦
with A's original direction of movement. Determine the magnitude and direction of B's ​​velocity vector by
the impact. (Answer 1.8 m / s; 36 ◦)

Solutions

Expert Solution


Related Solutions

Billiard ball A of mass mA = 0.122 kg moving with speed vA = 2.80 m/s...
Billiard ball A of mass mA = 0.122 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.145 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. 1) Solve these equations for...
Billiard ball A of mass mA = 0.116 kg moving with speed vA = 2.80 m/s...
Billiard ball A of mass mA = 0.116 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.135 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. Solve these equations for the...
1. A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass....
1. A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.81 m/s at an angle of 34.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity after the collision. (a)magnitude_____ m/s (b) direction_____ ° (with respect to the original line of motion) 2. A rod of length 36.00 cm has linear density...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical...
A billiard ball with speed of 3.0 m/s in the positive x direction hits an identical second billiard ball that is at rest at the origin. After the collision one of the balls has a momentum with an angle of -24 degrees respect to the positive x axis. The direction of the momentum of the second ball in degrees is:
One billiard ball is shot east at 1.8 m/s . A second, identical billiard ball is...
One billiard ball is shot east at 1.8 m/s . A second, identical billiard ball is shot west at 1.1 m/s . The balls have a glancing collision, not a head-on collision, deflecting the second ball by 90∘ and sending it north at 1.49 m/s . a) What is the speed of the first ball after the collision? Express your answer to two significant figures and include the appropriate units. b) What is the direction of the first ball after...
A basket ball moving to the right at a speed of 10 m/s makes a head-on...
A basket ball moving to the right at a speed of 10 m/s makes a head-on collision with a ping-pong ball moving to the left at 15 m/s. What will be the speed of the ping-pong ball after the collision. Ignore the air resistance.
A ball, mass m1 = 0.1 kg, is moving upwards with a speed of 10 m/s...
A ball, mass m1 = 0.1 kg, is moving upwards with a speed of 10 m/s when it collides inelastically with a cup, mass m2 = 0.9 kg, that is initially at rest. After the collision the system (ball+cup) moves straight upwards without rotating. This collision occurs on Earth, and the local gravitational field points down with g = 9.8 m/s2 . (a) What is the momentum of the system before the collision? Write your final answers and neatly show...
2. A 10 kg ball moving to the right with a speed of 6.0 m/s collides...
2. A 10 kg ball moving to the right with a speed of 6.0 m/s collides with a 20 kg ball moving to the left at a speed of 4.0 m/s. (a) If this is a head-on, perfectly inelastic collision, what is the velocity of the balls after the collision. Give magnitude and direction. (5 pts.) (b) If this is a head-on collision and the the 10 kg ball moves to the left with a speed of 7.0 m/s after...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT