Question

In: Mechanical Engineering

Thermodynamics The centrifugal compressor in a refrigeration system operating at steady state conditions, compresses adiabatically 0.1...

Thermodynamics

The centrifugal compressor in a refrigeration system operating at steady state conditions, compresses adiabatically 0.1 lbm/s of saturated R-134a vapor at 0°F to 200 psia. Answer the following.

a. Create a schematic representation of your system and draw the boundary you would use to solve the questions in this problem.

b. Represent the process on a T-s diagram.

c. Calculate the minimum work required by this compressor, in hp. Note: the solution to this problem requires interpolations; use your textbook tables. You answer will also be evaluated on its accuracy.

Solutions

Expert Solution


Related Solutions

Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -4oC and...
Refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -4oC and a quality of 20% at a velocity of 6 m/s. At the exit, the refrigerant is a saturated vapor at -4oC. The evaporator flow channel has constant diameter of 1.7 cm. Determine the mass flow rate of the refrigerant, in kg/s, and the velocity at the exit, in m/s.
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and...
refrigerant 134a enters the evaporator of a refrigeration system operating at steady state at -12°C and a quality of 20% at a velocity of 7 m/s. At the exit, the refrigerant is a saturated vapor at -12°C. The evaporator flow channel has constant diameter of 1.7cm. Determine the mass flow rate of the refrigerant in kg/s Determine the velocity at the exit in m/s
A refrigeration system contains an adiabatic compressor with Refrigerant-134a as working fluid. Inlet conditions (state 1)...
A refrigeration system contains an adiabatic compressor with Refrigerant-134a as working fluid. Inlet conditions (state 1) are 140 kPa and -100C and the exit state is 1.6 MPa and 800C (state 2). The changes in KE and PE are negligible. Determine (a) actual exit specific enthalpy in kJ/kg, (b) exit specific isentropic entropy in kJ/lg.K and (c) efficiency of the compressor in %.
An air compressor is operating at a steady state. The air enters at with a volumetric...
An air compressor is operating at a steady state. The air enters at with a volumetric flow rate 1.2 m^3/s at 170 kPa and 22 degrees celsius with negligible velocity and leaves at 1500 kPa with velocity of 200 m/s. The power to the compressor is 60 kW and the compressor is cooled at a rate of 15 kJ/kg. Determine the exit area.
Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric...
Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 48 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 8 kW from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.
Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in.2, a temperature...
Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in.2, a temperature of 70°F, and a volumetric flow rate of 500 ft3/min. The air velocity in the exit pipe is 700 ft/s and the exit pressure is 133 lbf/in.2 If each unit mass of air passing from inlet to exit undergoes a process described by pv1.34 = constant, determine (a) the exit temperature, in °F, and (b) the diameter of the exit pipe, in inches.
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to...
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to 10 bar while losing 4.2 kW of heat to the surroundings. At the compressor inlet, the air is at 25o C and has a velocity of 14 m/s. At the compressor outlet, the air is at 350o C and has a velocity of 2.4 m/s. If the compressor inlet has a cross-sectional area of 500 cm2 and the air behaves as an ideal gas,...
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to...
A compressor, operating at steady-state, increases the pressure of an air stream from 1 bar to 10 bar while losing 4.2 kW of heat to the surroundings. At the compressor inlet, the air is at 25o C and has a velocity of 14 m/s. At the compressor outlet, the air is at 350o C and has a velocity of 2.4 m/s. If the compressor inlet has a cross-sectional area of 500 cm2 and the air behaves as an ideal gas,...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT