Question

In: Statistics and Probability

Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear....

Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear. Let X be the number of flips needed for this two happen. Let Y be the number of flips needed for the first head to appear. Find a general expression for the condition probability mass function pY |X(i|n) when n ≥ 2. Interpret your answer, i.e., if the number of flips required for 2 heads to appear is n, what can you say about the arrival of the first head?

Solutions

Expert Solution

WE have has negative binomial distribution and has geometric distribution with parameter .

The PMF of is

The PMF of is

The joint PMF of is found as follows: Observe that

has geometric distribution with parameter .

  has geometric distribution with parameter .

Thus,

Using the conditional probability rule,

In the notation given in the question,

If the second head appears in the n-the toss, then the first head appears in one of the tosses .

That is the second toss has equal probability of occurring in one of n-1 tosses independent of p. Hence the conditional probability


Related Solutions

You toss a biased coin with the probability of heads as p. (a) What is the...
You toss a biased coin with the probability of heads as p. (a) What is the expected number of tosses required until you obtain two consecutive heads ? (b) Compute the value in part (a) for p = 1/2 and p = 1/4.
Take a coin that lands “heads” with probability 1/2 and flip it repeatedly while keeping trackof...
Take a coin that lands “heads” with probability 1/2 and flip it repeatedly while keeping trackof the pattern of “heads” and “tails” that you see. Use 1 to denote a “head” and 0 to denotea “tail”. We are interested in computing the frequency of the pattern{1, 1, 0}, i.e., of seeingtwo consecutive “heads” followed by a “tail”. To do this we construct a Markov chain whosestate space consists of all the possible 3-flip patterns:1){1, 1, 1}2){1, 1, 0}3){1, 0, 1}4){0,...
A coin that lands on heads with a probability of p is tossed multiple times. Each...
A coin that lands on heads with a probability of p is tossed multiple times. Each toss is independent. X is the number of heads in the first m tosses and Y is the number of heads in the first n tosses. m and n are fixed integers where 0 < m < n. Find the joint distribution of X and Y.
Consider successive flips of a coin that always lands on "heads" with probability p, and determine...
Consider successive flips of a coin that always lands on "heads" with probability p, and determine the probability distribution of the first time, after the beginning, that the total number of heads is equal to the total number of tails. Hint: the first time that this occurs is at time 2n can be obtained by first conditioning on the total number of heads in the first 2n trials.
A biased coin has probability of p =0.52 for heads. What is the minimum number of...
A biased coin has probability of p =0.52 for heads. What is the minimum number of coin tosses needed such that there will be more heads than tails with 99% probability.
Your unfair coin comes up heads with probability 0.6. You flip it until you get four...
Your unfair coin comes up heads with probability 0.6. You flip it until you get four heads in a row. Let t be the expected number of times you flip. Write an equation for t. (Your equation, if solved, should give the value of t).
If you flip a fair coin, the probability that the result is heads will be 0.50....
If you flip a fair coin, the probability that the result is heads will be 0.50. A given coin is tested for fairness using a hypothesis test of H0:p=0.50 versus HA:p≠0.50. The given coin is flipped 180 times, and comes up heads 110 times. Assume this can be treated as a Simple Random Sample. The test statistic for this sample z and the p value
You flip a coin 100 times to see whether it is biased and get 60 heads....
You flip a coin 100 times to see whether it is biased and get 60 heads. Explain two different ways you could find the p-value of this experiment.
There is a fair coin and a biased coin that flips heads with probability 1/4.You randomly...
There is a fair coin and a biased coin that flips heads with probability 1/4.You randomly pick one of the coins and flip it until you get a heads. Let X be the number of flips you need. Compute E[X] and Var[X]
A biased coin has probability p = 3/7 of flipping heads. In a certain game, one...
A biased coin has probability p = 3/7 of flipping heads. In a certain game, one flips this coin repeatedly until flipping a total of four heads. (a) What is the probability a player finishes in no more than 10 flips? (b) If five players independently play this game, what is the probability that exactly two of them finish in no more than ten flips?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT