Question

In: Math

A coin that lands on heads with a probability of p is tossed multiple times. Each...

A coin that lands on heads with a probability of p is tossed multiple times. Each toss is independent. X is the number of heads in the first m tosses and Y is the number of heads in the first n tosses. m and n are fixed integers where 0 < m < n. Find the joint distribution of X and Y.

Solutions

Expert Solution

Given: A coin is tossed with probability p.
Each toss is independent
X: the number of heads in first m tosses
  Y: the number of heads in first n tosses
0<m<n

Answer:    

The experiment of getting a head or a tail on tossing a coin is a bernoulli trial.

The probability of getting a head is p.
the probability of getting a tail is 1-p.

Say for random variable X, the experiment is repeated m times. Thus by definition, we have X follows binomial distribution with parameter m and p

Similarly for random variable Y, the experiment is repeated n times, thus Y follows binomial distribution with parameters n and p.

Now, we have the tosses are independent thus X and Y is also independent.

The joint distribution f(x,y) is given by
f(x,y)= f(x) . f(y) as both X and Y are independent

that is the joint distribution is product of distributions of random variable X and random variable Y which are both binomial distribution.


Related Solutions

STAT 2332 #1. A coin is tossed 1000 times, it lands heads 516 heads, is the...
STAT 2332 #1. A coin is tossed 1000 times, it lands heads 516 heads, is the coin fair? (a) Set up null and alternative hypotheses (two tailed). (b) Compute z and p. (c) State your conclusion. #2. A coin is tossed 10,000 times, it lands heads 5160 heads, is the coin fair? (a) Set up null and alternative hypotheses (two tailed). (b) Compute z and p. (c) State your conclusion.
A coin with probability p>0 of turning up heads is tossed 4 times. Let X be...
A coin with probability p>0 of turning up heads is tossed 4 times. Let X be the number of times heads are tossed. (a) Find the probability function of X in terms of p. (b) The result above can be extended to the case of n independent tosses (that is, for a generic number of tosses), and the probability function in this case receives a very specific name. Find the name of this particular probability function. Notice that the probability...
If a fair coin is tossed 25 times, the probability distribution for the number of heads,...
If a fair coin is tossed 25 times, the probability distribution for the number of heads, X, is given below. Find the mean and the standard deviation of the probability distribution using Excel Enter the mean and round the standard deviation to two decimal places. x   P(x) 0   0 1   0 2   0 3   0.0001 4   0.0004 5   0.0016 6   0.0053 7   0.0143 8   0.0322 9   0.0609 10   0.0974 11   0.1328 12   0.155 13   0.155 14   0.1328 15   0.0974 16  ...
Consider successive flips of a coin that always lands on "heads" with probability p, and determine...
Consider successive flips of a coin that always lands on "heads" with probability p, and determine the probability distribution of the first time, after the beginning, that the total number of heads is equal to the total number of tails. Hint: the first time that this occurs is at time 2n can be obtained by first conditioning on the total number of heads in the first 2n trials.
Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear....
Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear. Let X be the number of flips needed for this two happen. Let Y be the number of flips needed for the first head to appear. Find a general expression for the condition probability mass function pY |X(i|n) when n ≥ 2. Interpret your answer, i.e., if the number of flips required for 2 heads to appear is n, what can you say about...
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
a) A coin is tossed 4 times. Let X be the number of Heads on the...
a) A coin is tossed 4 times. Let X be the number of Heads on the first 3 tosses and Y be the number of Heads on the last three tossed. Find the joint probabilities pij = P(X = i, Y = j) for all relevant i and j. Find the marginal probabilities pi+ and p+j for all relevant i and j. b) Find the value of A that would make the function Af(x, y) a PDF. Where f(x, y)...
A coin is tossed with P(heads) = p. a) What is the expected number of tosses...
A coin is tossed with P(heads) = p. a) What is the expected number of tosses required to get n heads? b) Determine the variance of the number of tosses needed to get the first head. c) Determine the variance of the number of tosses needed to get n heads.
A coin is tossed with P(heads) = p. a) What is the expected number of tosses...
A coin is tossed with P(heads) = p. a) What is the expected number of tosses required to get n heads? b) Determine the variance of the number of tosses needed to get the first head. c) Determine the variance of the number of tosses needed to get n heads.
When coin 1 is flipped, it lands on heads with probability   3 /5  ; when coin...
When coin 1 is flipped, it lands on heads with probability   3 /5  ; when coin 2 is flipped it lands on heads with probability   7 /10  . (a) If coin 1 is flipped 9 times, find the probability that it lands on heads at least 7 times. (b) If one of the coins is randomly selected and flipped 8 times, what is the probability that it lands on heads exactly 5 times? (c) In part (b), given that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT