Question

In: Statistics and Probability

A biased coin has probability p = 3/7 of flipping heads. In a certain game, one...

A biased coin has probability p = 3/7 of flipping heads. In a certain game, one flips this coin repeatedly until flipping a total of four heads.

(a) What is the probability a player finishes in no more than 10 flips?

(b) If five players independently play this game, what is the probability that exactly two of them finish in no more than ten flips?

Solutions

Expert Solution


Related Solutions

You toss a biased coin with the probability of heads as p. (a) What is the...
You toss a biased coin with the probability of heads as p. (a) What is the expected number of tosses required until you obtain two consecutive heads ? (b) Compute the value in part (a) for p = 1/2 and p = 1/4.
A biased coin has probability of p =0.52 for heads. What is the minimum number of...
A biased coin has probability of p =0.52 for heads. What is the minimum number of coin tosses needed such that there will be more heads than tails with 99% probability.
I have a coin and I know that the probability p of flipping heads is either...
I have a coin and I know that the probability p of flipping heads is either 1/2 or 1/4. I flip the coin 3 times and I get THT. Use the maximum likelihood method to determine the actual value of p.
Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear....
Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear. Let X be the number of flips needed for this two happen. Let Y be the number of flips needed for the first head to appear. Find a general expression for the condition probability mass function pY |X(i|n) when n ≥ 2. Interpret your answer, i.e., if the number of flips required for 2 heads to appear is n, what can you say about...
- Your friend claims he has a fair coin; that is, the probability of flipping heads...
- Your friend claims he has a fair coin; that is, the probability of flipping heads or tails is equal to 0.5. You believe the coin is weighted. Suppose a coin toss turns up 15 heads out of 20 trials. At α = 0.05, can we conclude that the coin is fair (i.e., the probability of flipping heads is 0.5)? You may use the traditional method or P-value method.
6. Create a probability distribution for a coin flipping game. That is, toss a coin at...
6. Create a probability distribution for a coin flipping game. That is, toss a coin at least 25 times and keep up with the number of heads and the number of tails. (8 points for each part) a. Compile your data into a probability distribution. Be sure to show that your distribution meets the properties for a probability distribution. RESULTS Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19...
There is a fair coin and a biased coin that flips heads with probability 1/4.You randomly...
There is a fair coin and a biased coin that flips heads with probability 1/4.You randomly pick one of the coins and flip it until you get a heads. Let X be the number of flips you need. Compute E[X] and Var[X]
You are tossing a coin and it has a probability of p to show heads on...
You are tossing a coin and it has a probability of p to show heads on any given toss. You keep on tossing the coin until you see a heads. Let X represent the number of tosses until you see a heads. 1. Find the probability that X is odd. 2. Find the probability that X is even, DO NOT USE QUESTION 1. 3. Let's say the coin is balanced, what is the probability that X is odd? Is this...
What is the probability that you would get heads-up when flipping a coin ONE time? What...
What is the probability that you would get heads-up when flipping a coin ONE time? What is the probability that you would get heads-up when flipping a coin TEN times? What is the probability that you would get heads-up on two coins flipped at the same time? What is the probability that you would roll a 5 on a single dice if you rolled it five times? What is the probability that you would roll a 3 on a single...
A box contains three fair coins and one biased coin. For the biased coin, the probability...
A box contains three fair coins and one biased coin. For the biased coin, the probability that any flip will result in a head is 1/3. Al draws two coins from the box, flips each of them once, observes an outcome of one head and one tail and returns the coins to the box. Bo then draws one coin from the box and flips it. The result is a tail. Determine the probability that neither Al nor Bo removed the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT