Question

In: Statistics and Probability

There is a fair coin and a biased coin that flips heads with probability 1/4.You randomly...

There is a fair coin and a biased coin that flips heads with probability 1/4.You randomly pick one of the coins and flip it until you get a heads. Let X be the number of flips you need. Compute E[X] and Var[X]

Solutions

Expert Solution

P[ head come up = 1/4 = 0.25

Possible trial

number of trial (X) outcome probability (p)
1 H 1/4
2 TH (3/4)*(1/4)  
3 TTH (3/4)^2*(1/4)
4 TTTH (3/4)^3*(1/4)
....

The pattern will be same

Now,

(1)

(2)

Subtract 2 from 1

infinite GP with a = 1/4 and r = 3/4

(3)

(4)

Subtract 4 from 3

(5)

again multiply by (3/4)

(6)

Subtract 6 from 5

.


Related Solutions

In a sequence of independent flips of a fair coin thwr comes up heads with probability...
In a sequence of independent flips of a fair coin thwr comes up heads with probability 0.6, what is the probability that there is a run of three consecutive heads within the first 10 flips? Show a Markov chain that counts the number of consecutive heads attained.
Given that in 4 flips of a fair coin there are at least two "heads", what...
Given that in 4 flips of a fair coin there are at least two "heads", what is the probability that there are two "tails"? There are ten equally likely outcomes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. You randomly select one value, call it the initial value. Then, you continue to randomly select values, call them follow-up selections, until you come up with the initial value. What is the fewest number of follow-up selections that insures that...
What’s the probability that a fair coin results in 12 or fewer heads from 40 flips?...
What’s the probability that a fair coin results in 12 or fewer heads from 40 flips? And What does that probability say about the fairness of the coin?
You toss a biased coin with the probability of heads as p. (a) What is the...
You toss a biased coin with the probability of heads as p. (a) What is the expected number of tosses required until you obtain two consecutive heads ? (b) Compute the value in part (a) for p = 1/2 and p = 1/4.
A box contains three fair coins and one biased coin. For the biased coin, the probability...
A box contains three fair coins and one biased coin. For the biased coin, the probability that any flip will result in a head is 1/3. Al draws two coins from the box, flips each of them once, observes an outcome of one head and one tail and returns the coins to the box. Bo then draws one coin from the box and flips it. The result is a tail. Determine the probability that neither Al nor Bo removed the...
If you flip a fair coin, the probability that the result is heads will be 0.50....
If you flip a fair coin, the probability that the result is heads will be 0.50. A given coin is tested for fairness using a hypothesis test of H0:p=0.50 versus HA:p≠0.50. The given coin is flipped 180 times, and comes up heads 110 times. Assume this can be treated as a Simple Random Sample. The test statistic for this sample z and the p value
Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear....
Suppose you flip a biased coin (that lands heads with probability p) until 2 heads appear. Let X be the number of flips needed for this two happen. Let Y be the number of flips needed for the first head to appear. Find a general expression for the condition probability mass function pY |X(i|n) when n ≥ 2. Interpret your answer, i.e., if the number of flips required for 2 heads to appear is n, what can you say about...
Consider successive flips of a coin that always lands on "heads" with probability p, and determine...
Consider successive flips of a coin that always lands on "heads" with probability p, and determine the probability distribution of the first time, after the beginning, that the total number of heads is equal to the total number of tails. Hint: the first time that this occurs is at time 2n can be obtained by first conditioning on the total number of heads in the first 2n trials.
A biased coin has probability of p =0.52 for heads. What is the minimum number of...
A biased coin has probability of p =0.52 for heads. What is the minimum number of coin tosses needed such that there will be more heads than tails with 99% probability.
Find the expected number of flips of a coin, which comes up heads with probability p,...
Find the expected number of flips of a coin, which comes up heads with probability p, that are necessary to obtain the pattern h, t, h, h, t, h, t, h. This is from Sheldon/Ross Introduction to Probability models 11th edition Chapter 3#91. I know there is the textbook solution manual on Chegg, but I am not able to make sense of the solution. I would greatly appreciate if anyone can help me make sense of it!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT