In: Statistics and Probability
Buckeye Creek Amusement Park is open from the beginning of May to the end of October. Buckeye Creek relies heavily on the sale of season passes. The sale of season passes brings in significant revenue prior to the park opening each season, and season pass holders con- tribute a substantial portion of the food, beverage, and novelty sales in the park. Greg Ross, director of marketing at Buckeye Creek, has been asked to develop a targeted marketing campaign to increase season pass sales. Greg has data for last season that show the number of season pass holders for each zip code within 50 miles of Buckeye Creek. he has also obtained the total population of each zip code from the U.S. Census bureau website. Greg thinks it may be possible to use regression analysis to predict the number of season pass holders in a zip code given the total population of a zip code. If this is possible, he could then conduct a direct mail campaign that would target zip codes that have fewer than the expected number of season pass holders. *I only need help with #5,6,7 thank you
Managerial Report
1. Compute descriptive statistics and construct a scatter diagram for the data. Discuss your findings.
2. Using simple linear regression, develop an estimated regression equation that could be used to predict the number of season pass holders in a zip code given the total population of the zip code.
3. Test for a significant relationship at the .05 level of significance.
4. Did the estimated regression equation provide a good fit?
5. Use residual analysis to determine whether the assumed regression model is appropriate.
6. Discuss if/how the estimated regression equation should be used to guide the marketing campaign.
7. What other data might be useful to predict the number of season pass holders in a zip code?
ZIP Code | Population | Season Pass Holders |
45220 | 14171 | 224 |
45219 | 17576 | 42 |
45225 | 13437 | 15 |
45217 | 5731 | 78 |
45214 | 9952 | 19 |
45232 | 6913 | 28 |
45223 | 13349 | 83 |
45229 | 15713 | 75 |
45206 | 11353 | 69 |
45202 | 15105 | 83 |
45203 | 3411 | 9 |
45207 | 8233 | 8 |
41074 | 5566 | 36 |
41073 | 6193 | 63 |
45224 | 21043 | 207 |
41071 | 21596 | 133 |
45205 | 21683 | 102 |
45204 | 6642 | 36 |
41016 | 5603 | 42 |
45216 | 9028 | 55 |
45212 | 22356 | 207 |
41011 | 25849 | 193 |
41014 | 7913 | 41 |
45237 | 21137 | 86 |
45208 | 18236 | 424 |
45211 | 33968 | 342 |
45239 | 26485 | 269 |
41075 | 15868 | 236 |
45209 | 8941 | 111 |
45226 | 5029 | 84 |
45238 | 42737 | 564 |
45231 | 39939 | 361 |
45213 | 11683 | 153 |
45215 | 28915 | 308 |
45218 | 3917 | 54 |
41017 | 40218 | 493 |
41076 | 14779 | 176 |
45251 | 22887 | 205 |
45227 | 18431 | 215 |
45247 | 20372 | 357 |
41015 | 22298 | 189 |
45248 | 22880 | 380 |
45236 | 21823 | 310 |
45240 | 27033 | 142 |
45246 | 13522 | 100 |
45230 | 25763 | 423 |
45233 | 14175 | 244 |
45252 | 4799 | 58 |
41018 | 29001 | 244 |
45243 | 14755 | 303 |
45241 | 25623 | 299 |
45014 | 44178 | 307 |
45242 | 20015 | 377 |
45244 | 26316 | 448 |
41059 | 2266 | 22 |
41048 | 12597 | 214 |
41051 | 18730 | 323 |
45255 | 22552 | 307 |
45174 | 2072 | 52 |
41042 | 50429 | 440 |
45002 | 13298 | 184 |
45015 | 12504 | 47 |
45069 | 46264 | 561 |
45052 | 3770 | 52 |
45249 | 13432 | 154 |
41001 | 16982 | 164 |
41005 | 20892 | 209 |
45011 | 62303 | 496 |
45245 | 17701 | 189 |
41091 | 17372 | 226 |
45013 | 51730 | 286 |
45150 | 31179 | 316 |
41094 | 9748 | 106 |
45030 | 16386 | 192 |
45140 | 52874 | 657 |
41063 | 3662 | 19 |
45040 | 51183 | 549 |
45102 | 22009 | 217 |
45039 | 21398 | 278 |
41007 | 3215 | 26 |
45053 | 3441 | 25 |
45157 | 10312 | 72 |
45050 | 6988 | 80 |
41080 | 2114 | 11 |
45067 | 12507 | 62 |
45034 | 1227 | 11 |
45103 | 29874 | 267 |
47025 | 21986 | 154 |
45044 | 49621 | 322 |
41030 | 7280 | 35 |
41092 | 3198 | 18 |
45065 | 5194 | 35 |
41033 | 1712 | 11 |
47060 | 6910 | 38 |
41006 | 4835 | 19 |
45122 | 12550 | 59 |
45042 | 28821 | 91 |
45056 | 28811 | 88 |
45036 | 36066 | 225 |
45064 | 2376 | 9 |
47040 | 5242 | 10 |
45153 | 2132 | 10 |
45152 | 9686 | 101 |
47022 | 2740 | 17 |
47001 | 10370 | 36 |
45162 | 2900 | 11 |
45005 | 31944 | 93 |
41035 | 9671 | 54 |
45106 | 12675 | 61 |
45176 | 8485 | 47 |
45311 | 7381 | 10 |
41043 | 2968 | 7 |
45327 | 7961 | 13 |
41040 | 7249 | 14 |
45066 | 23119 | 129 |
41097 | 6854 | 22 |
45054 | 1730 | 12 |
41095 | 4218 | 11 |
45120 | 3774 | 20 |
45342 | 31929 | 55 |
47032 | 3628 | 10 |
45107 | 9608 | 40 |
47012 | 10579 | 23 |
45130 | 4202 | 17 |
45118 | 4239 | 23 |
41086 | 1602 | 5 |
47018 | 4435 | 12 |
45458 | 26281 | 75 |
45449 | 19237 | 15 |
45068 | 11293 | 28 |
47041 | 5544 | 18 |
45113 | 4118 | 16 |
45154 | 8093 | 41 |
45320 | 15282 | 8 |
45459 | 26744 | 39 |
47031 | 5179 | 12 |
41004 | 4311 | 9 |
41003 | 2397 | 5 |
41010 | 3321 | 5 |
41002 | 2104 | 6 |
45429 | 25537 | 39 |
45305 | 11159 | 16 |
45409 | 13554 | 9 |
45419 | 15782 | 33 |
45121 | 8919 | 26 |
45440 | 19463 | 25 |
45420 | 24393 | 20 |
45410 | 17025 | 7 |
45430 | 7137 | 7 |
45403 | 16794 | 8 |
45142 | 4973 | 10 |
we can solve this in excel , we enter the data in excel and then goto data > data analysis tab and select regression
1. Compute descriptive statistics and construct a scatter diagram for the data. Discuss your findings.
The results are
Population | Season Pass Holders | ||
Mean | 15738.22 | Mean | 128.2649 |
Standard Error | 1028.591 | Standard Error | 11.83066 |
Median | 12675 | Median | 59 |
Mode | #N/A | Mode | 11 |
Standard Deviation | 12639.54 | Standard Deviation | 145.3776 |
Sample Variance | 1.6E+08 | Sample Variance | 21134.64 |
Kurtosis | 1.612577 | Kurtosis | 1.454546 |
Skewness | 1.306203 | Skewness | 1.428911 |
Range | 61076 | Range | 652 |
Minimum | 1227 | Minimum | 5 |
Maximum | 62303 | Maximum | 657 |
Sum | 2376471 | Sum | 19368 |
Count | 151 | Count | 151 |
2. Using simple linear regression, develop an estimated regression
equation that could be used to predict the number of season pass
holders in a zip code given the total population of the zip
code.
the regression equation is formed using the coefficients as
pass holders = -16.25 + 0.00918*Population
3. Test for a significant relationship at the .05 level of
significance.
we check for the signficant F , which is almost zero
(1.21755E-34)
Hence we conclude that the relationship between the variables is
significant
4. Did the estimated regression equation provide a good fit?
the r2 of the model is 0.6374 , this means the model is able to estimate only about 63.47% variation in the data , hence the model is not a good fit
Please note that we can answer onyl 4 subparts of the question at a time , as per the answering guidelines