In: Statistics and Probability
Buckeye Creek Amusement Park is open from the beginning of May to the end of October. Buckeye Creek relies heavily on the sale of season passes. The sale of season passes brings in significant revenue prior to the park opening each season, and season pass holders contribute a substantial portion of the food, beverage, and novelty sales in the park. Greg Ross, director of marketing at Buckeye Creek, has been asked to develop a targeted marketing campaign to increase season pass sales. Greg has data for last season that show the number of season pass holders for each zip code within 50 miles of Buckeye Creek. he has also obtained the total population of each zip code from the U.S. Census bureau website. Greg thinks it may be possible to use regression analysis to predict the number of season pass holders in a zip code given the total population of a zip code. If this is possible, he could then conduct a direct mail campaign that would target zip codes that have fewer than the expected number of season pass holders.
1. Did the estimated regression equation provide a good fit?
2. Use residual analysis to determine whether the assumed regression model is appropriate.
3. Discuss if/how the estimated regression equation should be used to guide the marketing campaign.
4. What other data might be useful to predict the number of season pass holders in a zip code?
ZIP Code |
Population | Season Pass Holders |
45220 | 14171 | 224 |
45219 | 17576 | 42 |
45225 | 13437 | 15 |
45217 | 5731 | 78 |
45214 | 9952 | 19 |
45232 | 6913 | 28 |
45223 | 13349 | 83 |
45229 | 15713 | 75 |
45206 | 11353 | 69 |
45202 | 15105 | 83 |
45203 | 3411 | 9 |
45207 | 8233 | 8 |
41074 | 5566 | 36 |
41073 | 6193 | 63 |
45224 | 21043 | 207 |
41071 | 21596 | 133 |
45205 | 21683 | 102 |
45204 | 6642 | 36 |
41016 | 5603 | 42 |
45216 | 9028 | 55 |
45212 | 22356 | 207 |
41011 | 25849 | 193 |
41014 | 7913 | 41 |
45237 | 21137 | 86 |
45208 | 18236 | 424 |
45211 | 33968 | 342 |
45239 | 26485 | 269 |
41075 | 15868 | 236 |
45209 | 8941 | 111 |
45226 | 5029 | 84 |
45238 | 42737 | 564 |
45231 | 39939 | 361 |
45213 | 11683 | 153 |
45215 | 28915 | 308 |
45218 | 3917 | 54 |
41017 | 40218 | 493 |
41076 | 14779 | 176 |
45251 | 22887 | 205 |
45227 | 18431 | 215 |
45247 | 20372 | 357 |
41015 | 22298 | 189 |
45248 | 22880 | 380 |
45236 | 21823 | 310 |
45240 | 27033 | 142 |
45246 | 13522 | 100 |
45230 | 25763 | 423 |
45233 | 14175 | 244 |
45252 | 4799 | 58 |
41018 | 29001 | 244 |
45243 | 14755 | 303 |
45241 | 25623 | 299 |
45014 | 44178 | 307 |
45242 | 20015 | 377 |
45244 | 26316 | 448 |
41059 | 2266 | 22 |
41048 | 12597 | 214 |
41051 | 18730 | 323 |
45255 | 22552 | 307 |
45174 | 2072 | 52 |
41042 | 50429 | 440 |
45002 | 13298 | 184 |
45015 | 12504 | 47 |
45069 | 46264 | 561 |
45052 | 3770 | 52 |
45249 | 13432 | 154 |
41001 | 16982 | 164 |
41005 | 20892 | 209 |
45011 | 62303 | 496 |
45245 | 17701 | 189 |
41091 | 17372 | 226 |
45013 | 51730 | 286 |
45150 | 31179 | 316 |
41094 | 9748 | 106 |
45030 | 16386 | 192 |
45140 | 52874 | 657 |
41063 | 3662 | 19 |
45040 | 51183 | 549 |
45102 | 22009 | 217 |
45039 | 21398 | 278 |
41007 | 3215 | 26 |
45053 | 3441 | 25 |
45157 | 10312 | 72 |
45050 | 6988 | 80 |
41080 | 2114 | 11 |
45067 | 12507 | 62 |
45034 | 1227 | 11 |
45103 | 29874 | 267 |
47025 | 21986 | 154 |
45044 | 49621 | 322 |
41030 | 7280 | 35 |
41092 | 3198 | 18 |
45065 | 5194 | 35 |
41033 | 1712 | 11 |
47060 | 6910 | 38 |
41006 | 4835 | 19 |
45122 | 12550 | 59 |
45042 | 28821 | 91 |
45056 | 28811 | 88 |
45036 | 36066 | 225 |
45064 | 2376 | 9 |
47040 | 5242 | 10 |
45153 | 2132 | 10 |
45152 | 9686 | 101 |
47022 | 2740 | 17 |
47001 | 10370 | 36 |
45162 | 2900 | 11 |
45005 | 31944 | 93 |
41035 | 9671 | 54 |
45106 | 12675 | 61 |
45176 | 8485 | 47 |
45311 | 7381 | 10 |
41043 | 2968 | 7 |
45327 | 7961 | 13 |
41040 | 7249 | 14 |
45066 | 23119 | 129 |
41097 | 6854 | 22 |
45054 | 1730 | 12 |
41095 | 4218 | 11 |
45120 | 3774 | 20 |
45342 | 31929 | 55 |
47032 | 3628 | 10 |
45107 | 9608 | 40 |
47012 | 10579 | 23 |
45130 | 4202 | 17 |
45118 | 4239 | 23 |
41086 | 1602 | 5 |
47018 | 4435 | 12 |
45458 | 26281 | 75 |
45449 | 19237 | 15 |
45068 | 11293 | 28 |
47041 | 5544 | 18 |
45113 | 4118 | 16 |
45154 | 8093 | 41 |
45320 | 15282 | 8 |
45459 | 26744 | 39 |
47031 | 5179 | 12 |
41004 | 4311 | 9 |
41003 | 2397 | 5 |
41010 | 3321 | 5 |
41002 | 2104 | 6 |
45429 | 25537 | 39 |
45305 | 11159 | 16 |
45409 | 13554 | 9 |
45419 | 15782 | 33 |
45121 | 8919 | 26 |
45440 | 19463 | 25 |
45420 | 24393 | 20 |
45410 | 17025 | 7 |
45430 | 7137 | 7 |
45403 | 16794 | 8 |
45142 | 4973 | 10 |
1. Did the estimated regression equation provide a good fit?
The p-value for the significance test of slope is 0.000 and less than 0.05 significance level. Hence, we can conclude that Population has statistically significant effect on Season Pass Holders. Hence, we can conclude that the estimated regression equation provides a good fit.
2. Use residual analysis to determine whether the assumed regression model is appropriate.
From the scatter plot of the serial number of the observation VS residulas does not a random pattern. Hence, the assumption of random on residulas is violated.
From the above scatter plot between the residulas and explanatory variable population, the variation of the residuals is increased when increasd the value of population and has a funnenl shape relationship. So, the assumtion of independence between the residulas and explanatory variable is violated.
Hence, the residual analysis determines that the assumptions of the regression model are not appropriate.
3. Discuss if/how the estimated regression equation should be used to guide the marketing campaign.
Ans: By suning this regression equation we can estimate the value of Season Pass Holders for a ZIP Code when we know the population of this ZIP Code.
4. What other data might be useful to predict the number of season pass holders in a zip code?
Ans: Only 63.7% percent variation of the dependent variable season pass holders can be explained by the explanatory variable Population .Hence, other data might be useful to predict the number of season pass holders in a zip code.