Question

In: Physics

A 115 kg seal at an amusement park slides from rest down a ramp into the...

A 115 kg seal at an amusement park slides from rest down a ramp into the pool below. The top of the ramp is 2.00 m higher than the surface of the water and the ramp is inclined at an angle of 26.5 ∘ above the horizontal.

Part A

Part complete

If the seal reaches the water with a speed of 4.55 m/s, what is the work done by kinetic friction?

Express your answer using three significant figures.

Part B

What is the coefficient of kinetic friction between the seal and the ramp?

Solutions

Expert Solution

Given data .

Mass of block m = 115 kg

Inclination angle = 26.5 degrees

Height of ramp h = 2 m

Final velocity vf = 4.55 m/s

a) work energy theorem.

W = 1/2 m(vf^2 - vi^2)+mg(yf -yi)

= 115*0.5 [(4.55^2 -0)]+115*9.8( - 2)

w = -1064 J

Net force along perpendicular to ramp.

sigma fy = N - mgcostheta

N = mg costheta

uk =- w sintheta / mgcostheta*h

= 1064*tan26.5/115*9.8*2

Coefficient of kinetic friction uk = 0.235


Related Solutions

Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp...
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp is inclined at an angle of 20o from the horizontal. Air resistance and friction between the object and the ramp are negligible. Let g = 9.81 m/s2. Determine the kinetic energy of the object, in kJ, and the velocity of the object, in m/s, at the bottom of the ramp.
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the...
A 50 kg crate slides down a ramp that is inclined by 30 degrees from the horizontal. The acceleration of the crate parallel to the surface of the ramp is 2.0m/s^2, and the length of the ramp is 10m. Determine the kinetic energy accumulated by the crate when it reaches the bottom of the ramp if it started from rest at the top of the incline. Calculate the amount of energy lost by the crate due to friction in its...
A 2.2 kg cart slides eastward down a frictionless ramp from a height of 1.5 m...
A 2.2 kg cart slides eastward down a frictionless ramp from a height of 1.5 m and then onto a horizontal surface where it has a head-on elastic collision with a stationary 3.0 kg cart cushioned by an ideal Hooke’s Law spring. The maximum compression of the spring during the collision is 2.0 cm. [10 marks] a) Determine the velocity of the cart 1 just before the collision. [1 mark] b) At the point of maximum compression determine the velocity...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that has a height h = 3.1 m. At the bottom, it hits a block of mass M = 7.1 kg that is at rest on a horizontal surface. Assume a smooth transition at the bottom of the ramp. If the collision is elastic and friction can be ignored, determine the distance the mass m will travel up the ramp after the collision.
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made to collide with a second cart of mass m2 = 24 kg which then heads into a vertical loop of radius 0.25 m (a) Determine the height h at which cart #1 would need to start from to make sure that cart #2 completes the loop without leaving the track. Assume an elastic collision. (b) Find the height needed if instead the more massive...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.455. After sliding down a distance d = 5.80 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.645 kg at point . (a) Find the speed of m1 at point  just before...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
A 0.25 kg block slides down a ramp that is 0.6 m tall, 0.8 m long...
A 0.25 kg block slides down a ramp that is 0.6 m tall, 0.8 m long and has a diagonal length of 1.0 m. The block starts at rest and arrives at the bottom with a speed of 1.3m/s. a.) How much heat was created by friction? b.)What is the average frictional force acting on the block? At what rate is kinetic energy being dissipated into heat near the bottom of the ramp? c.)Instead of a block, a cart with...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...
In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.2 m and then collides with stationary block 2, which has mass m2 = 4m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.55 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT