Question

In: Chemistry

In a hydrogen atom, how might an electron move from one energy level to another?

In a hydrogen atom, how might an electron move from one energy level to another?

Solutions

Expert Solution

According to Neils Bohr,

  • When light is incident on the atom the electron can absorb energy and is moved to an orbit further from the nucleus. The electron is said to be excited to a higher energy level. The frequency of the light which excites the electron from one energy level to another is exactly equal to the difference in energy of the two levels.
  • When an electron falls from a high energy level, an orbit far away from the nucleus, to a lower energy level, an orbit close to the nucleus, light is emitted. The energy of the light emitted is equal to the difference in energy between the two energy levels.

Electrons can jump from one energy level to another.

Electrons must be in one of the allowed energy levels.

  • The first energy level= -13.6 eV energy
  • The second energy level = -3.4 eV energy

Suppose an electron wants to jump from the first energy level, n = 1, to the second energy level n = 2. The second energy level has higher energy than the first, so to move from n = 1 to n = 2, the electron needs to gain energy by absorbing light. It needs to gain (-3.4) - (-13.6) = 10.2 eV.

If an electron jumps from the second energy level down to the first energy level (n=2 to n=1), it must give off some energy by emitting light. The atom absorbs or emits light in discrete packets called photons. It needs to emit (-13.6) - (-3.4) = -10.2 eV


Related Solutions

If a single electron in an excited hydrogen atom is occupying the 3rd energy level and...
If a single electron in an excited hydrogen atom is occupying the 3rd energy level and then relaxes back to the ground state, how much energy is released in the form of electromagnetic radiation?
14: An electron in hydrogen atom at the energy level n = 7 undergo a transition...
14: An electron in hydrogen atom at the energy level n = 7 undergo a transition to level n = 3: Find the frequency and the energy of the emitted photon. 15: An electron jumps from higher energy level to the first energy level with an energy difference of 2.04375 x 10-18 J. find the initial energy level. Show your calculations, 16: A: What will be the speed of an electron at 4 th energy level? Suppose the electron has...
An electron in a Hydrogen atom originally at n=5 energy level absorbs a photon with a...
An electron in a Hydrogen atom originally at n=5 energy level absorbs a photon with a frequency of 6.54×10^13 and then proceeds to emit another photon with a frequency of 2.98×10^14. To what energy level does the electron move?
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
a) Find the energy of an electron in the n=5 state of the hydrogen atom.
a) Find the energy of an electron in the n=5 state of the hydrogen atom. b) Find the energy of an electron in the n=6 state of the hydrogen atom. c) If an electron initially in the n= 6 state falls to the n= 5 state, how much energy must the electron give up? d) If an electron initially in the n= 6 state falls to the n=5 state, what is the wavelength of the photon that will be emitted?
The binding energy of an electron in the ground state in a hydrogen atom is about:...
The binding energy of an electron in the ground state in a hydrogen atom is about: A. 13.6 eV B. 3.4 eV C. 10.2 eV D. 1.0 eV E. 27.2 eV
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box...
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box of length equal to the Bohr diameter, 2a0. What would be the ground-state energy of this "atom"? ______________eV
A standard hydrogen atom consists of one proton and one electron. The net electric charge of the hydrogen atom is equal to
A standard hydrogen atom consists of one proton and one electron. The net electric charge of the hydrogen atom is equal toGroup of answer choices1.6 x 10-19 C.3.2 x 10-19 C.4.8 x 10-19 C.6.4 x 10-19 C.zero.
The electron in a hydrogen atom starts in the n = 7 level. Determine all the...
The electron in a hydrogen atom starts in the n = 7 level. Determine all the possible wavelengths that could be emitted if the electron ends in the first excited state.
The energy level diagram of the hydrogen atom is shown the figure below
The energy level diagram of the hydrogen atom is shown the figure below. An atom generally has an electron in a given energy level, however, a transition may occur if the atom absorbs or emits a photon, or particle of light.Note: The energy of a photon can be written as \(E_{v}=h c / \lambda\) and the constants \(h c=1240 \mathrm{eV}-\mathrm{nm}\).1. In the Bohr model of the atom, energy is radiated whenA. an electron falls from an outer energy level to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT