Question

In: Physics

A standard hydrogen atom consists of one proton and one electron. The net electric charge of the hydrogen atom is equal to

A standard hydrogen atom consists of one proton and one electron. The net electric charge of the hydrogen atom is equal to

Group of answer choices

1.6 x 10-19 C.

3.2 x 10-19 C.

4.8 x 10-19 C.

6.4 x 10-19 C.

zero.

Solutions

Expert Solution


Related Solutions

In one model of the hydrogen atom, an electron orbits a proton in a circle of...
In one model of the hydrogen atom, an electron orbits a proton in a circle of radius 5.28×10-11 m with a speed of 2.18×106 m/s. What is the acceleration of the electron in this model? What is the period of the motion?
In a hydrogen atom, a proton is separated from an electron by an average distance of...
In a hydrogen atom, a proton is separated from an electron by an average distance of about 5.3  10-11 meters. Use the information below to calculate the force of attraction by the electron on the proton. Electron Mass = 9.11  10-31 kg Proton Mass = 1.67  10-27 kg Elementary Charge = 1.602  10-19 C Coulomb's Constant (k) = 8.99  109 Nmm/CC Avagadro's Number = 6.02  1023 atoms/mole
An electron in a hydrogen atom orbits the proton at a radius of 5.29 x 10-11...
An electron in a hydrogen atom orbits the proton at a radius of 5.29 x 10-11 m. Considering the proton to be at the origin, and answering to 2 decimal places: (a) What is the electric field due to the proton at the position of the electron? (answer in terms of r, theta, and phi). (b) What is the resultant force on the electron? (answer in terms of r, theta, and phi). (c) What is the magnitude of the resulting...
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box...
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box of length equal to the Bohr diameter, 2a0. What would be the ground-state energy of this "atom"? ______________eV
Early 20th-century physicist Niels Bohr modeled the hydrogen atom as an electron orbiting a proton in...
Early 20th-century physicist Niels Bohr modeled the hydrogen atom as an electron orbiting a proton in one or another well-defined circular orbit. When the electron followed its smallest possible orbit, the atom was said to be in its ground state. (a) When the hydrogen atom is in its ground state, what orbital speed (in m/s) does the Bohr model predict for the electron? m/s (b) When the hydrogen atom is in its ground state, what kinetic energy (in eV) does...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
Consider a hydrogen atom with its electron in the nth orbital.
Consider a hydrogen atom with its electron in the nth orbital. Electromagnetic radiation of wavelength 90 nm is used to ionize the atom. If the kinetic energy of the ejected electron is 10.4 eV, then the value of n is (hc = 1242 eV nm).
In a hydrogen atom, how might an electron move from one energy level to another?
In a hydrogen atom, how might an electron move from one energy level to another?
3) A hydrogen atom contains just one electron, so it can produce only one wavelength of...
3) A hydrogen atom contains just one electron, so it can produce only one wavelength of light (and therefore only one color of light) at a time. Why then do we see many different colors of light simultaneously when we observe the emission spectrum of hydrogen?
Does the sign of the charge of an elementary particle, like an electron or proton, is...
Does the sign of the charge of an elementary particle, like an electron or proton, is a more, or less, fundamental property than the "sign" of its symmetry?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT