Question

In: Mechanical Engineering

An air-standard Carnot cycle is executed in a closed system between the temperature limits of 350...

An air-standard Carnot cycle is executed in a closed system between the temperature limits of 350 and 1200 K. The pressures before and after the isothermal compression are 150 and 300 kPa, respectively. If the net work output per cycle is 0.5 kJ, determine (a) the maximum pressure in the cycle, (b) the heat transfer to air, and (c) the mass of air. Assume variable specific heats for air.

Solutions

Expert Solution


Related Solutions

Consider a Carnot heat engine cycyle executed in a closed system (piston-cylinder device) using 0.01848695 kg...
Consider a Carnot heat engine cycyle executed in a closed system (piston-cylinder device) using 0.01848695 kg of stem as the working fluid. It is known that the maximum absolute temperature in the cycle is three times the minimum absolute temperature, and the net-work output of the cycle is 90 KJ assuming no kinetic and potential energy changes. If the steam changes from saturated vapor (state 3=h_g) to saturated liquid(state 4=h_f) during heat rejection (process3-4) determine a) the thermal efficiency of...
A Carnot engine operates between temperatures of 200 K and 350 K. In each cycle, 4000...
A Carnot engine operates between temperatures of 200 K and 350 K. In each cycle, 4000 J of heat is added to the ideal gas. This engine works on 0.5 mols of a diatomic gas. A) Calculate the volume ratio for just the adiabatic expansion. B) Determine the compression ratio - the highest volume divided by the lowest. C) If you reversed the cycle, how much work would be necessary to pull 100 J of heat from the cold temperature...
Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air...
Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air at the inlet of the gas turbine is 1200 kPa and 1000 K respectively. Assume the gas expands to 100 kPa in two stages. Between the stages, the air is reheated at a constant pressure of 350 kPa to 1000 K. Assume a fully isentropic process in the turbines. Find: (a) the work produced at each stage, in kJ/kg of air flowing. (b) the...
Air within a piston cylinder assembly executes a Carnot refrigeration cycle between hot and cold reservoirs...
Air within a piston cylinder assembly executes a Carnot refrigeration cycle between hot and cold reservoirs at TH=500 K and TC=300 K, respectively. The magnitude of the heat transfer rejected to the high temperature reservoir is 250 kJ per kg of air. The pressure at the start of the isothermal expansion is 325 kPa. The air can be modeled as an ideal gas with constant specific heat. For the air as a system, determine a. (5) the coefficient of performance....
Thermodynamics problem: An engine operates on an air-standard Otto cycle. The pressure and temperature of the...
Thermodynamics problem: An engine operates on an air-standard Otto cycle. The pressure and temperature of the isentropic compression 100 kPa and 40 °C, respectively. The pressure at the end of compression is 2.0 MPa and the net work is 87,000 J/mol. Assume ideal air-standard cycle. Determine the following: pressure, volume, and temperature at end of each step. compression ratio. heat input and heat rejected per mol of working fluid. thermal efficiency of the cycle.
Efficiency of an engine operating condition to Carnot cycle is equal to ? = 0.45. Temperature...
Efficiency of an engine operating condition to Carnot cycle is equal to ? = 0.45. Temperature and specific volume of the gaseous working medium at the beginning of isentropic compression are T1 = 600 K and v1 = 0.5 m3/Kg respectively. Find the gas properties at all other characteristic points of the cycle and the amount of heat released during isothermal compression. Assume that the mass of 1Kg of the gas undergoes the sequence of processes corresponding to Carnot cycle....
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures...
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures 750 K and 300 K. The isothermal expansion is associated with a heat input of 60 kJ from the surroundings. The volume after expansion has occurred isothermally is 0.4 m3 . Assuming air behaves as an ideal gas, calculate: (i) thermal efficiency for the cycle (ii) pressure and volume at the beginning of the isothermal expansion, in kPa and m3 , respectively. (iii) the...
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures...
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures 750 K and 300 K. The isothermal expansion is associated with a release of 60 kJ of heat into the surroundings. The volume after expansion has occurred isothermally is 0.4 m3 . Assuming air behaves as an ideal gas, calculate: (i) thermal efficiency for the cycle (ii) pressure and volume at the beginning of the isothermal expansion, in kPa and m3 , respectively. (iii)...
A cold air-standard Otto cycle has a compression ratio of 6 and the temperature and pressure...
A cold air-standard Otto cycle has a compression ratio of 6 and the temperature and pressure at the beginning of the compression process are 520°R and 14.2 lbf/in.2, respectively. The heat addition per unit mass of air is 500 Btu/lb. Assume constant specific heats evaluted at 520°R. Determine: (a) the maximum temperature, in °R. (b) the maximum pressure, in lbf/in.2 (c) the percent thermal efficiency. (d) the mean effective pressure, in lbf/in.2
A Carnot engine uses air as the working substance, receives heat at a temperature of 315oC,...
A Carnot engine uses air as the working substance, receives heat at a temperature of 315oC, and rejects it at 65oC. The maximum possible cycle pressure is 6.0MPa and the minimum volume is 0.95 liters. When heat is added, the volume increases by 250%. Determine the pressure and volume at each state in the cycle.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT