In: Statistics and Probability
Quesiton 5
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.01 /2, 8- 1 ) = 3.499
39.89 ± t(0.01/2, 8 -1) * 11.1/√(8)
Lower Limit = 39.89 - t(0.01/2, 8 -1) 11.1/√(8)
Lower Limit = 26.16
Upper Limit = 39.89 + t(0.01/2, 8 -1) 11.1/√(8)
Upper Limit = 53.62
99% Confidence interval is ( 26.16 , 53.62
)
Question 6
Mean X̅ = Σ Xi / n
X̅ = 1568.535 / 7 = 224.0764
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1 )
SX = √ ( 9.9049 / 7 -1 ) = 1.2848
The mean qualifying speed is 224.0764
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.1 /2, 7- 1 ) = 1.943
224.0764 ± t(0.1/2, 7 -1) * 1.2848/√(7)
Lower Limit = 224.0764 - t(0.1/2, 7 -1) 1.2848/√(7)
Lower Limit = 223.1329
Upper Limit = 224.0764 + t(0.1/2, 7 -1) 1.2848/√(7)
Upper Limit = 225.0199
90% Confidence interval is ( 223.1329 , 225.0199
)
Question 7
Mean X̅ = Σ Xi / n
X̅ = 224 / 10 = 22.4
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1 )
SX = √ ( 3576.4 / 10 -1 ) = 19.9343
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.05 /2, 10- 1 ) = 2.262
22.4 ± t(0.05/2, 10 -1) * 19.9343/√(10)
Lower Limit = 22.4 - t(0.05/2, 10 -1) 19.9343/√(10)
Lower Limit = 8.1
Upper Limit = 22.4 + t(0.05/2, 10 -1) 19.9343/√(10)
Upper Limit = 36.7
95% Confidence interval is ( 8.1 , 36.7
)