Question

In: Statistics and Probability

A sample of size 10 is taken from the first population: Sample mean of 101.2 and...

  • A sample of size 10 is taken from the first population: Sample mean of 101.2 and sample variance of 18.1
  • A sample of size 14 is taken from the second population: Sample mean of 98.7 and sample variance of 9.7

1)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the rejection region.

2)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the observed value of the test statistic.

3)If a significance level, not necessarily equal to the choice of questions 1 and 2, is used when the decision on pooling is made and pooling is found to be not appropriate: We wish to compare the means of two populations at α = 0.1 level, testing: Ho: μ1 = μ2 (against H1: μ1 > μ2). Find the rejection region.

answer for 3) is important

Solutions

Expert Solution

I HOPE I WAS HELPFUL AND HAVE CLEARED YOUR DOUBTS.

THANKYOU.


Related Solutions

A sample of size 10 is taken from the first population: Sample mean of 101.2 and...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and sample variance of 18.1 A sample of size 14 is taken from the second population: Sample mean of 98.7 and sample variance of 9.7 1)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the rejection region. 2)In order to decide whether pooling is appropriate or not, performing a test at α...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and...
A sample of size 10 is taken from the first population: Sample mean of 101.2 and sample variance of 18.1 A sample of size 14 is taken from the second population: Sample mean of 98.7 and sample variance of 9.7 1)In order to decide whether pooling is appropriate or not, performing a test at α = 0.2 level of significance : Find the rejection region. 2)In order to decide whether pooling is appropriate or not, performing a test at α...
Consider a sample of size 22 taken from a normal population. The sample mean is 2.777...
Consider a sample of size 22 taken from a normal population. The sample mean is 2.777 and the sample standard deviation is 0.13. We test Ho: μ = 2.7 versus H1: μ > 2.7 at the α = 0.05 level. The rejection region and our decision are Select one: a. t > 1.721; REJECT Ho b. t > 2.080; REJECT Ho c. t > 2.074; REJECT Ho d. t > 1.717; REJECT Ho
A random sample of size n = 55 is taken from a population with mean μ...
A random sample of size n = 55 is taken from a population with mean μ = −10.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard error" to 4 decimal places.) b. What is the probability that...
A random sample of size 40 is taken from a population with mean µ = 240...
A random sample of size 40 is taken from a population with mean µ = 240 and standard deviation σ = 26. i. Describe the probability distribution of the sample mean. ii. What are the mean and the standard deviation of the sample mean? iii. Calculate the probability that the sample mean is between 230 and 250.
A random sample of size 40 is taken from a population with mean µ = 240...
A random sample of size 40 is taken from a population with mean µ = 240 and standard deviation σ = 26. i. Describe the probability distribution of the sample mean. ii. What are the mean and the standard deviation of the sample mean? iii. Calculate the probability that the sample mean is between 230 and 250.
A random sample of size n = 50 is taken from a population with mean μ...
A random sample of size n = 50 is taken from a population with mean μ = −9.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard deviation" to 4 decimal places.) Expected Value= Standard Error= b. What...
A sample of size 81 is taken from a population with unknown mean and standard deviation...
A sample of size 81 is taken from a population with unknown mean and standard deviation 4.5.   In a test of H0: μ = 5 vs. Ha: μ < 5, if the sample mean was 4, which of the following is true? (i) We would fail to reject the null hypothesis at α = 0.01. (ii) We would fail to reject the null hypothesis at α = 0.05. (iii) We would fail to reject the null hypothesis at α =...
A random sample of size 18 taken from a normally distributed population revealed a sample mean...
A random sample of size 18 taken from a normally distributed population revealed a sample mean of 100 and a sample variance of 49. The 95% confidence interval for the population mean would equal: a)93.56 - 103.98 b)97.65 – 107.35 c)95.52 -104.65 d)96.52 – 103.48
A random sample of size 36 is taken from a population having mean 20 and variance...
A random sample of size 36 is taken from a population having mean 20 and variance 9.What is the probability that the sample meanXwill be at least 21?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT