Question

In: Statistics and Probability

From a normal population, a sample of 39 items is taken. The sample mean is 12...

From a normal population, a sample of 39 items is taken. The sample mean is 12 and the sample standard deviation is 2. Construct a 99% confidence interval for the population mean.

Solutions

Expert Solution

solution

Given that,

= 12

s =2

n = 39

Degrees of freedom = df = n - 1 =39- 1 = 38

At 99% confidence level the t is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

t /2  df = t0.005,38 = 2.712 ( using student t table)

Margin of error = E = t/2,df * (s /n)

= 2.712  * (2 / 39) = 0.87

The 99% confidence interval mean is,

- E < < + E

12 -0.87 < < 12+ 0.87

11.13 < < 12.87

(11.13 , 12.87)


Related Solutions

A sample of 39 observations is selected from a normal population. The sample mean is 28,...
A sample of 39 observations is selected from a normal population. The sample mean is 28, and the population standard deviation is 4. Conduct the following test of hypothesis using the .05 significance level.    H0 : μ ≤ 26 H1 : μ > 26 (a) Is this a one- or two-tailed test? "Two-tailed"-the alternate hypothesis is different from direction. "One-tailed"-the alternate hypothesis is greater than direction. (b) What is the decision rule? (Round your answer to 2 decimal places.)...
a. A random sample of 25 is taken from a normal distribution with population mean =...
a. A random sample of 25 is taken from a normal distribution with population mean = 62, and population standard deviation = 7. What is the margin of error for a 90% confidence interval? b. Repeat the last problem if the standard deviation is unknown, given that the sample standard deviation is S=5.4
Consider a sample of size 22 taken from a normal population. The sample mean is 2.777...
Consider a sample of size 22 taken from a normal population. The sample mean is 2.777 and the sample standard deviation is 0.13. We test Ho: μ = 2.7 versus H1: μ > 2.7 at the α = 0.05 level. The rejection region and our decision are Select one: a. t > 1.721; REJECT Ho b. t > 2.080; REJECT Ho c. t > 2.074; REJECT Ho d. t > 1.717; REJECT Ho
A sample of n = 15 observations is taken from a normal population with unknown mean...
A sample of n = 15 observations is taken from a normal population with unknown mean and variance. The sample has a mean of ¯x = 88.1 and standard deviation 14.29. The researcher hypothesizes that (a) the population has a mean of 90 and (b) the population has a variance of 300. Using confidence intervals, determine the validity of the researcher’s hypotheses at an overall confidence level of 95% assuming the two confidence intervals are independent. That is, recalling that...
A random sample of 84 items is taken, producing a sample mean of 43. The population...
A random sample of 84 items is taken, producing a sample mean of 43. The population standard deviation is 5.89. Construct a 90% confidence interval to estimate the population mean.
a simple random sample of size 36 is taken from a normal population with mean 20...
a simple random sample of size 36 is taken from a normal population with mean 20 and standard deivation of 15. What is the probability the sample,mean,xbar based on these 36 observations will be within 4 units of the population mean. round to the hundreths place
Random sample of size n=19 is taken from a Normal population, sample mean is 11.5895, standard...
Random sample of size n=19 is taken from a Normal population, sample mean is 11.5895, standard deviation is 1.0883. 1. At the 2% level, test whether it is reasonable to believe that the true population variance is larger than 1. Using the scenario from above, do the following 2. Derive the power function. Show your work. 3. Using R, graph the power function for 0.5 < sigma^2 < 3.5. 4. Pretend that the sample size was actually 56. Plot this...
If a random sample of 100 items is taken from a population in which the proportion...
If a random sample of 100 items is taken from a population in which the proportion of items having a desired attribute is p=0.45, what is the probability that the proportion of successes in the sample will be less than or equal to 0.49 The probability will be ____
If a random sample of 125 items is taken from a population in which the proportion...
If a random sample of 125 items is taken from a population in which the proportion of items having a desired attribute is p = 0.16, what is the probability that the proportion of successes in the sample will be more than 0.2?
A random sample of size 15 is taken from a population assumed to be normal, with...
A random sample of size 15 is taken from a population assumed to be normal, with sample mean = 1.2 and sample variance = 0.6. Calculate a 95 percent confidence interval for population mean.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT