In: Finance
Solve for the unknown number of years in each of the following (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.):
Present Value | Years | Interest Rate % | Future Value | |
$600 | 8 | 1,393 | ||
$850 | 12 | 2,330 | ||
$18,800 | 18 | 367,247 | ||
$21,900 | 14 | 382,893 |
We use the formula:
A=P(1+r/100)^n
where
A=future value
P=present value
r=rate of interest
n=time period.
A= P ( 1+ r/100) ^ n
1,393= 600*(1+8/100) ^n
or 1,393 / 600 = (1+8/100) ^n
or 2.3216666667 = (1.08) ^ n
Taking log on both sides we get,
log 2.3216666667 = n log (1.08)
Hence, n = Log 2.3216666667 / log (1.08)
or n = 10.94430774 Years
Hence the correct answer is 10.94 Years
---------------
We use the formula:
A=P(1+r/100)^n
where
A=future value
P=present value
r=rate of interest
n=time period.
A= P ( 1+ r/100) ^ n
2330 = 850 *(1+12/100) ^n
or 2330 / 850 = (1+12/100) ^n
or 2.741176471 = (1.12) ^ n
Taking log on both sides we get,
log 2.741176471= n log (1.12)
Hence, n = Log 2.741176471 / log (1.12)
or n =8.897899012 Years
Hence the correct answer is 8.90 Years
---------------------
We use the formula:
A=P(1+r/100)^n
where
A=future value
P=present value
r=rate of interest
n=time period.
$ 367,247 = $18,800 * ( 1+18/100) ^ n
$ 367,247 / $18,800 = 1.18 ^ n
or 19.53441489= (1.18) ^ n
Taking log on both sides we get,
log 19.53441489= n log (1.18)
Hence, n = Log 19.53441489/ log (1.18)
or n = 17.95721149 Years
Hence the correct answer is 17.96 Years
-----------------
We use the formula:
A=P(1+r/100)^n
where
A=future value
P=present value
r=rate of interest
n=time period.
$ 382,893 = $ 21,900 * ( 1+14/100) ^ n
$ 382,893 / $ 21,900 = 1.14 ^ n
or 17.48369863= (1.14) ^ n
Taking log on both sides we get,
log 17.48369863= n log (1.14)
Hence, n = Log 17.48369863/ log (1.14)
or n= 21.83703643 Years
Hence the correct answer is 21.84 Years