Question

In: Statistics and Probability

1, Assume that both populations are normally distributed. ​(a) Test whether μ1≠μ2 at the α=0.05 level...

1, Assume that both populations are normally distributed.

​(a) Test whether μ1≠μ2 at the α=0.05 level of significance for the given sample data.​ Detemine the​ P-value for this hypothesis test.

​(Round to three decimal places as​ needed.)

(b) Construct a 95​% confidence interval about μ1−μ2.

Population 1

Population 2

n

14

14

x

11.2

8.4

s

2.8

3.2

2, Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed.

​(a) Test whether μ1>μ2 at the α=0.05 level of significance for the given sample data.​

Find the test statistic for this hypothesis test. and P- Value

(b) Construct a 95​% confidence interval about μ1−μ2.

population 1 population 2

n 29 22

x 49.1 43.8

s 4.4 10.5

Solutions

Expert Solution

Solution:

1.

-----------------------------------------------------------------

2)


Related Solutions

Assume that both populations are normally distributed. ​a) Test whether 2μ1≠μ2 at the α=0.05 level of...
Assume that both populations are normally distributed. ​a) Test whether 2μ1≠μ2 at the α=0.05 level of significance for the given sample data.​ b) Construct a 95​% confidence interval about 2μ1−μ2. Sample 1 Sample 2 n 19 19 x overbarx 11.7 14.4 s 3.4 3.9
Assume that both populations are normally distributed. ​a) Test whether μ1 > μ2 at the alpha...
Assume that both populations are normally distributed. ​a) Test whether μ1 > μ2 at the alpha equals 0.05 level of significance for the given sample data. ​b) Construct a 95​% confidence interval about μ1 - μ2. C) Determine the test statistic Sample 1 Sample 2 n 22 14 x overbar 50.9 42.6 s 7.3 11.7
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.01α=0.01 level of significance for the given sample data.​(b) Construct a 99​% confidence interval about mu 1 minus mu 2μ1−μ2. Population 1 Population 2 n 13 13 x overbarx 13.9 11.2 s 3.1 2.8
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.01α=0.01 level of significance for the given sample data. Population 1 Population 2 n 17 17 x bar 14.614.6 19.819.8 s 4.24.2 3.73.7 Determine the​ P-value for this hypothesis test. P=?​(Round to three decimal places as​ needed.)
In testing the difference between the means of two normally distributed populations, if μ1 = μ2...
In testing the difference between the means of two normally distributed populations, if μ1 = μ2 = 50, n1 = 9, and n2 = 13, the degrees of freedom for the t statistic equals ___________. 19,20,21,22 When comparing two independent population means by using samples selected from two independent, normally distributed populations with equal variances, the correct test statistic to use is ______. z,F,t, t^2 When testing a hypothesis about the mean of a population of paired differences in which...
Test the given claim using the α=0.05 significance level and assuming that the populations are normally...
Test the given claim using the α=0.05 significance level and assuming that the populations are normally distributed and that the population variances are equal. Claim: The treatment population and the placebo population have the same means. Treatment group: n=9, x¯=110, s=5.9. Placebo group: n=7, x¯=116,s=5.7. The test statistic is =___________ The positive critical value is =__________ The negative critical value is =________ Is there sufficient evidence to warrant the rejection of the claim that the treatment and placebo populations have...
You wish to test the following claim (H1) at a significance level of α=0.002.       Ho:μ1=μ2       H1:μ1≠μ2...
You wish to test the following claim (H1) at a significance level of α=0.002.       Ho:μ1=μ2       H1:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=11 with a mean of M1=63.8 and a standard deviation of SD1=12.9 from the first population. You obtain a sample of size n2=18 with...
You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=24n1=24 with a mean of M1=85.8M1=85.8 and a standard deviation of SD1=19.3SD1=19.3 from the first population. You obtain a sample of size n2=17n2=17 with...
You wish to test the following claim (H1H1) at a significance level of α=0.02α=0.02.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.02α=0.02.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2 You obtain the following two samples of data. Sample #1 Sample #2 97.7 78.7 14.7 91.3 90.1 39.8 56.9 47.2 67.5 62.3 64.9 26.7 79.4 52.9 63.3 69.1 20.4 67.5 54.1 67 46.4 52.3 44.2 65.9 95.8 56.9 78.7 85.9 56.4 59.1 53.5 72.5 70.8 61.2 64.9 70.2 68.6 44.2 41.6 77.4 81.6 14.7 55.2 71.4 56.4 50.5 52.9 41.6 24 49.9 53.5 74.9...
You wish to test the following claim (H1H1) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=19n1=19 with a mean of M1=77.6M1=77.6 and a standard deviation of SD1=20.7SD1=20.7 from the first population. You obtain a sample of size n2=20n2=20 with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT