Question

In: Statistics and Probability

Assume that both populations are normally distributed. ​a) Test whether μ1 > μ2 at the alpha...

Assume that both populations are normally distributed. ​a) Test whether μ1 > μ2 at the alpha equals 0.05 level of significance for the given sample data. ​b) Construct a 95​% confidence interval about μ1 - μ2. C) Determine the test statistic

Sample 1

Sample 2

n

22

14

x overbar

50.9

42.6

s

7.3

11.7

Solutions

Expert Solution


Related Solutions

1, Assume that both populations are normally distributed. ​(a) Test whether μ1≠μ2 at the α=0.05 level...
1, Assume that both populations are normally distributed. ​(a) Test whether μ1≠μ2 at the α=0.05 level of significance for the given sample data.​ Detemine the​ P-value for this hypothesis test. ​(Round to three decimal places as​ needed.) (b) Construct a 95​% confidence interval about μ1−μ2. Population 1 Population 2 n 14 14 x 11.2 8.4 s 2.8 3.2 2, Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether μ1>μ2...
Assume that both populations are normally distributed. ​a) Test whether 2μ1≠μ2 at the α=0.05 level of...
Assume that both populations are normally distributed. ​a) Test whether 2μ1≠μ2 at the α=0.05 level of significance for the given sample data.​ b) Construct a 95​% confidence interval about 2μ1−μ2. Sample 1 Sample 2 n 19 19 x overbarx 11.7 14.4 s 3.4 3.9
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.01α=0.01 level of significance for the given sample data.​(b) Construct a 99​% confidence interval about mu 1 minus mu 2μ1−μ2. Population 1 Population 2 n 13 13 x overbarx 13.9 11.2 s 3.1 2.8
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.01α=0.01 level of significance for the given sample data. Population 1 Population 2 n 17 17 x bar 14.614.6 19.819.8 s 4.24.2 3.73.7 Determine the​ P-value for this hypothesis test. P=?​(Round to three decimal places as​ needed.)
In testing the difference between the means of two normally distributed populations, if μ1 = μ2...
In testing the difference between the means of two normally distributed populations, if μ1 = μ2 = 50, n1 = 9, and n2 = 13, the degrees of freedom for the t statistic equals ___________. 19,20,21,22 When comparing two independent population means by using samples selected from two independent, normally distributed populations with equal variances, the correct test statistic to use is ______. z,F,t, t^2 When testing a hypothesis about the mean of a population of paired differences in which...
Test the claim that μ1 = μ2. Two samples are random, independent, and come from populations...
Test the claim that μ1 = μ2. Two samples are random, independent, and come from populations that are normally distributed. The sample statistics are given below. Assume that σ 21 ≠ σ 22. Use α = 0.05. n1 = 25 n2 = 30 x1 = 18 x2 = 16 s1 = 1.5 s2 = 1.9
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.2 (a) What is the value of the test statistic? 2.153 correct (b) What is the degrees of freedom for the t distribution? (Round your answer...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.9 s2 = 8.1 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
Consider the hypothesis test with null hypothesis μ1=μ2 and alternative hypothesis μ1 > μ2.Suppose that sample...
Consider the hypothesis test with null hypothesis μ1=μ2 and alternative hypothesis μ1 > μ2.Suppose that sample sizes n1 = 10 and n2 =10, that the sample means are 4.9 and 2.8 respectively, and that the sample variances are 2 and 3 respectively. Assume that the population variances are equal and that the data are drawn from normal distributions. a) Test the hypothesis that at α= 0.05 and provide a conclusion statement b) Provide an adequate confidence interval with 95% confidence...
You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=24n1=24 with a mean of M1=85.8M1=85.8 and a standard deviation of SD1=19.3SD1=19.3 from the first population. You obtain a sample of size n2=17n2=17 with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT