Question

In: Statistics and Probability

Assume that both populations are normally distributed. ​a) Test whether 2μ1≠μ2 at the α=0.05 level of...

Assume that both populations are normally distributed.

​a) Test whether 2μ1≠μ2 at the α=0.05 level of significance for the given sample data.​

b) Construct a 95​% confidence interval about 2μ1−μ2.

Sample 1

Sample 2

n

19

19

x overbarx

11.7

14.4

s

3.4

3.9

Solutions

Expert Solution

SOLUTION:

From given data,

Assume that both populations are normally distributed

Sample 1 Sample 2
= 19 = 19
=11.7 = 14.4
= 3.4 = 3.9

a) Test whether 2μ1≠μ2 at the α=0.05 level of significance for the given sample data

H0 : 2μ1 = μ2 ( Null hypothesis )

H1 : 2μ1 ≠ μ2 ( Alternative hypothesis )

- = 11.7 - 14.4 = -2.7

SE( - ) =

=

= 1.18699

Test statistic : t =  ( - ) / SE( - )

=  -2.7 / 1.18699

= - 2.2746

t = - 2.2746

degree of freedom =df = + - 2 = 19 + 19 -2 = 36

α=0.05 = > critical value = tcritical = 2.028

b) Construct a 95​% confidence interval about 2μ1−μ2

95% confidence interval is

( - ) tcritical * SE( - )

- 2.7   2.028 * 1.18699

- 2.7   2.407215

( - 2.7 - 2.407215 ) , ( - 2.7+ 2.407215 )

-5.1072 , -0.2927

confidence interval about 2μ1−μ2 is from -5.10 to -0.29


Related Solutions

1, Assume that both populations are normally distributed. ​(a) Test whether μ1≠μ2 at the α=0.05 level...
1, Assume that both populations are normally distributed. ​(a) Test whether μ1≠μ2 at the α=0.05 level of significance for the given sample data.​ Detemine the​ P-value for this hypothesis test. ​(Round to three decimal places as​ needed.) (b) Construct a 95​% confidence interval about μ1−μ2. Population 1 Population 2 n 14 14 x 11.2 8.4 s 2.8 3.2 2, Use the given statistics to complete parts​ (a) and​ (b). Assume that the populations are normally distributed. ​(a) Test whether μ1>μ2...
Assume that both populations are normally distributed. ​a) Test whether μ1 > μ2 at the alpha...
Assume that both populations are normally distributed. ​a) Test whether μ1 > μ2 at the alpha equals 0.05 level of significance for the given sample data. ​b) Construct a 95​% confidence interval about μ1 - μ2. C) Determine the test statistic Sample 1 Sample 2 n 22 14 x overbar 50.9 42.6 s 7.3 11.7
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.01α=0.01 level of significance for the given sample data.​(b) Construct a 99​% confidence interval about mu 1 minus mu 2μ1−μ2. Population 1 Population 2 n 13 13 x overbarx 13.9 11.2 s 3.1 2.8
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2...
Assume that both populations are normally distributed. ​(a) Test whether mu 1 not equals mu 2μ1≠μ2 at the alpha equals 0.01α=0.01 level of significance for the given sample data. Population 1 Population 2 n 17 17 x bar 14.614.6 19.819.8 s 4.24.2 3.73.7 Determine the​ P-value for this hypothesis test. P=?​(Round to three decimal places as​ needed.)
Test the given claim using the α=0.05 significance level and assuming that the populations are normally...
Test the given claim using the α=0.05 significance level and assuming that the populations are normally distributed and that the population variances are equal. Claim: The treatment population and the placebo population have the same means. Treatment group: n=9, x¯=110, s=5.9. Placebo group: n=7, x¯=116,s=5.7. The test statistic is =___________ The positive critical value is =__________ The negative critical value is =________ Is there sufficient evidence to warrant the rejection of the claim that the treatment and placebo populations have...
You wish to test the following claim (HaHa) at a significance level of α=0.05 Ho:μ1=μ2 Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.05 Ho:μ1=μ2 Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=23n1=23 with a mean of ¯x1=73.1x and a standard deviation of s1=15.5 from the first population. You obtain a sample of size n2=19 with a mean...
Test at the α = 0.05 significance level whether the mean of a random sample of...
Test at the α = 0.05 significance level whether the mean of a random sample of size n = 16 is statistically significantly less than 10 if the distribution from which the sample was taken is normal, ?̅= 8.4 and ? 2 = 10.24. a) What is the appropriate test you can use to test the claim? b) What are the null and alternative hypotheses for this test? c) What is your conclusion? d) Find the confidence interval on the...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1<μ2Ha:μ1<μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=12n1=12 with a mean of M1=71.3M1=71.3 and a standard deviation of SD1=11.6SD1=11.6 from the first population. You obtain a sample of size n2=25n2=25 with...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05.       Ho:μ1=μ2Ho:μ1=μ2       Ha:μ1>μ2Ha:μ1>μ2 You obtain the following two samples of data. Sample #1 Sample #2 67.8 100.5 96.8 59.4 66.7 86.2 89.2 86.7 70.6 100.5 65.8 77.4 78.4 71.9 69.3 61.4 69.6 81.6 90.4 75.3 83.4 70.9 84.5 75.3 62 58.6 77.4 73.8 70.6 83 83 63.6 76.2 61.4 75.6 84.5 92.6 87.6 73.9 77.3 77.8 64.9 67.5 49.7 87 56.5 96.1 75.8 84.1 39.6 63.8 68.5...
Assume that you plan to use a significance level of α = 0.05 to test 5)...
Assume that you plan to use a significance level of α = 0.05 to test 5) the claim that p1 = p2. Use the given sample sizes and numbers of successes to find the P-value for the hypothesis test, and make a conclusion addressed to the claim. n1=100 n2=100 x1 = 38 x2 = 40
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT