In: Statistics and Probability
The carapace lengths (in mm) of crayfish were recorded for samples from two sections of a stream
in Kansas.
section1 5, 11, 16, 8, 12
section2 17, 14,15, 21,19, 13
1. Use the data in problem 4 for the following:
a. For the Wilcoxon Rank-Sum Test Statistic, W, compute E(W) and Var(W).
b. Compute the Z-score for the normal approximation for the data provided in the text.
c. Give the approximate p-value for a two-sided test (you do not need to show all steps of the test) and compare with the two-sided exact p-value of 0.030.
please leave message if you need anything thanks.
| A | B | rank for sample 1 | rank for sample 2 | 
| 5 | 17 | 1 | 9 | 
| 11 | 14 | 3 | 6 | 
| 16 | 15 | 8 | 7 | 
| 8 | 21 | 2 | 11 | 
| 12 | 19 | 4 | 10 | 
| 13 | 5 | 
A      
sample size ,    n1 =    5
sum of ranks ,    R1 =    18
      
B      
sample size ,    n2 =    6
sum of ranks ,   R2 =    48
      
a)
W=sum of ranks for smaller sample size =  
    18
      
mean ,µ =    n1(n1+n2+1)/2 =    30
Variance=(n1*n2*(n1+n2+1)/12) = 30
      
std dev,σ =    √(n1*n2*(n1+n2+1)/12) =  
5.4772
      
b)
Z-stat =    (W - µ)/σ =    -2.1909
      
a)
      
P-value =        0.0285