Question

In: Chemistry

A. Calculate KP at 298 K for the reaction NO(g)+12O2(g)→NO2(g) assuming that ΔH∘R is constant over...

A. Calculate KP at 298 K for the reaction NO(g)+12O2(g)→NO2(g) assuming that ΔHR is constant over the interval 298-600 K.

B. Calculate KP at 486 K for this reaction assuming that ΔHR is constant over the interval 298-600 K.

Thank you

Solutions

Expert Solution


Related Solutions

Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium...
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium partial pressures of NO2 and N2O4 are 1.337 atm and 0.657 atm, respectively.
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is...
Consider the following reaction occurring at 298 K: N2O(g)+NO2(g)⇌3NO(g) Part A Show that the reaction is not spontaneous under standard conditions by calculating ΔG∘rxn. Part B If a reaction mixture contains only N2O and NO2 at partial pressures of 1.0 atm each, the reaction will be spontaneous until some NO forms in the mixture. What maximum partial pressure of NO builds up before the reaction ceases to be spontaneous? Part C What temperature is required to make the reaction spontaneous...
Calculate the equilibrium constant at 298 K for the reaction of ammonia with oxygen to form...
Calculate the equilibrium constant at 298 K for the reaction of ammonia with oxygen to form nitrogen and water. The data refer to 298 K. 4NH3(g) + 3O2(g) <> 2N2(g) + 6H2O(l) Substance NH3(g) O2(g) N2(g) H2O(l) ΔH°f (kJ/mol) -46 0 0 -285 ΔG°f (kJ/mol) -16 0 0 -237 S°(J/K·mol) 192 205 192 70 I thought Kc is just Molar concentration of Products divide by Molar concentration on Reactants which would be 12 x 16 divide by 14 x 13...
Consider the reaction: SO2Cl2(g)⇌SO2(g)+Cl2(g) Kp=2.91×103 at 298 K In a reaction at equilibrium, the partial pressure...
Consider the reaction: SO2Cl2(g)⇌SO2(g)+Cl2(g) Kp=2.91×103 at 298 K In a reaction at equilibrium, the partial pressure of SO2 is 0.135 atm and that of Cl2 is 0.342 atm . Part A What is the partial pressure of SO2Cl2 in this mixture?
Consider the following reaction between oxides of nitrogen: NO2(g)+N2O(g)?3NO(g) 1. Calculate ?G? at 800 K, assuming...
Consider the following reaction between oxides of nitrogen: NO2(g)+N2O(g)?3NO(g) 1. Calculate ?G? at 800 K, assuming that ?H? and ?S? do not change with temperature. Express your answer using two significant figures. 2.Calculate ?G? at 1000 K.
Part 1. Consider the following reaction at 298 K: 2H2(g)+O2(g)---->2H2O(g) ΔH=-483.6 kj/mol Calculate the following quantities:...
Part 1. Consider the following reaction at 298 K: 2H2(g)+O2(g)---->2H2O(g) ΔH=-483.6 kj/mol Calculate the following quantities: ΔSsys=____J(molxK) ΔSsurr=____J(molxK) ΔSuniv=____J (molxK) Part 2. For a particular reaction, ΔH = 168.1 kJ/mol and ΔS = -55.8 J/(mol·K). Calculate ΔG for this reaction at 298 K. Is this system spontaneaus as written, Is it in the reverse direction, Or is it at equilibrium?
Part A Calculate Kc for the reaction below. I2(g)⇌2I(g)Kp=6.26×10−22 (at 298 K) Express your answer using...
Part A Calculate Kc for the reaction below. I2(g)⇌2I(g)Kp=6.26×10−22 (at 298 K) Express your answer using three significant figures. Kc=? Part B Calculate Kc for the reaction below. CH4(g)+H2O(g)⇌CO(g)+3H2(g)Kp=7.7×1024 (at 298 K) Express your answer using two significant figures. Kc=
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <----->PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.56 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 1.57 at 600 K: CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium partial pressures of all species when CO and Cl2, each at an intitial partial pressure of 1.65 atm, are introduced into an evacuated vessel at 600 K. PCO = ______ atm PCl2= _______ atm PCOCl2 = _______ atm
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g)...
The equilibrium constant, Kp, for the following reaction is 2.01 at 500 K: PCl3(g) + Cl2(g) <<<----->>PCl5(g) Calculate the equilibrium partial pressures of all species when PCl3 and Cl2, each at an intitial partial pressure of 1.01 atm, are introduced into an evacuated vessel at 500 K. PPCl3 = atm PCl2 = atm PPCl5 = atm
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT