Question

In: Chemistry

Consider the reaction: 2NO(g)+Br2(g)⇌2NOBr(g) Kp=28.4 at 298 K In a reaction mixture at equilibrium, the partial...

Consider the reaction:
2NO(g)+Br2(g)⇌2NOBr(g) Kp=28.4 at 298 K
In a reaction mixture at equilibrium, the partial pressure of NO is 105 torr and that of Br2 is 132 torr .

What is the partial pressure of NOBr in this mixture?

Solutions

Expert Solution

Given reaction is   2NO(g) + Br2(g)    ⇌    2NOBr(g)      :Kp = 28.4

The partial pressure of NO = 105 torr

The partial pressure of Br2 = 132 torr

                                    2NO(g) + Br2(g)    ⇌    2NOBr(g)     

The equilibrium constant , Kp = p2NOBr(g) / [ p2NO(g) x p Br2(g) ]

From this      p2NOBr(g) = Kp x [ p2NO(g) x p Br2(g) ]

Plug the above values we get    p2NOBr(g) = 28.4 x [ 1052 x 132]

                                                                    = 41.3 x 106

                                                  p NOBr(g) =

                                                                   = 6429 torr

Therefore the partial pressure of NOBr in the mixture is 6429 torr


Related Solutions

Consider the following equilibrium: 2NOBr(g) <------> 2NO(g) + Br2(g). An equilibrium mixture is 0.146 M NOBr,...
Consider the following equilibrium: 2NOBr(g) <------> 2NO(g) + Br2(g). An equilibrium mixture is 0.146 M NOBr, 0.270 M NO, and 0.236 M Br2. a) What is the value of Kc at the temperature of the above concentrations? b) How many moles/liter of NOBr must be added to the above equilibrium mixture to produce an equilibrium mixture that is 0.439 M Br2? c) If the temperature is 370 K, what is the value of Kp? d) What is the value of...
The equilibrium constant, Kp, for the followingreaction is 0.160 at 298K.2NOBr(g) 2NO(g)+ Br2(g)...
The equilibrium constant, Kp, for the following reaction is 0.160 at 298K.2NOBr(g) → 2NO(g) + Br2(g)If an equilibrium mixture of the three gases in a 17.3 L container at 298K contains NOBr at a pressure of 0.351 atm and NO at a pressure of 0.222 atm, the equilibrium partial pressure of Br2 is atm.
Consider the following equilibrium: 2NOBr(g) 2NO(g) + Br2(g) An equilibrium mixture is 0.150 M NOBr, 0.395...
Consider the following equilibrium: 2NOBr(g) 2NO(g) + Br2(g) An equilibrium mixture is 0.150 M NOBr, 0.395 M NO, and 0.221 M Br2. a) What is the value of Kc at the temperature of the above concentrations? Kc = M b) How many moles/liter of NOBr must be added to the above equilibrium mixture to produce an equilibrium mixture that is 0.448 M Br2? mol/L NOBr must be added c) If the temperature is 400 K, what is the value of...
Consider the equilibrium N2(g)+O2(g)+Br2(g)⇌2NOBr(g) Part A Calculate the equilibrium constant Kp for this reaction, given the...
Consider the equilibrium N2(g)+O2(g)+Br2(g)⇌2NOBr(g) Part A Calculate the equilibrium constant Kp for this reaction, given the following information (at 295 K ): 2NO(g)+Br2(g)⇌2NOBr(g)Kc=2.1 2NO(g)⇌N2(g)+O2(g)Kc=2.2×1030 Express your answer using two significant figures.
Consider the reaction: SO2Cl2(g)⇌SO2(g)+Cl2(g) Kp=2.91×103 at 298 K In a reaction at equilibrium, the partial pressure...
Consider the reaction: SO2Cl2(g)⇌SO2(g)+Cl2(g) Kp=2.91×103 at 298 K In a reaction at equilibrium, the partial pressure of SO2 is 0.135 atm and that of Cl2 is 0.342 atm . Part A What is the partial pressure of SO2Cl2 in this mixture?
The equilibrium constant, Kc, for the following reaction is 6.50×10-3 at 298K. 2NOBr(g)<====> 2NO(g) + Br2(g)...
The equilibrium constant, Kc, for the following reaction is 6.50×10-3 at 298K. 2NOBr(g)<====> 2NO(g) + Br2(g) If an equilibrium mixture of the three gases in a 16.4 L container at 298K contains 0.383 mol of NOBr(g) and 0.230 mol of NO, the equilibrium concentration of Br2 is____M The equilibrium constant, Kc , for the following reaction is 7.00×10-5 at 673 K. NH4I(s) <====>NH3(g) + HI(g) If an equilibrium mixture of the three compounds in a 5.04 L container at 673...
1. Consider the following reaction: Br2(g)+Cl2(g)⇌2BrCl(g) Kp=1.11×10−4 at 150 K. A reaction mixture initially contains a...
1. Consider the following reaction: Br2(g)+Cl2(g)⇌2BrCl(g) Kp=1.11×10−4 at 150 K. A reaction mixture initially contains a Br2 partial pressure of 750. torr and a Cl2 partial pressure of 735 torr at 150 K. Calculate the equilibrium partial pressure of BrCl in atm and torr. (State any assumptions).
For the reaction below, Kp = 29.95 at 800 K. Calculate the equilibrium partial pressures of...
For the reaction below, Kp = 29.95 at 800 K. Calculate the equilibrium partial pressures of the reactants and products if the initial pressures are P_PCl5 = 0.3900 atm and P_PCl3 = 0.4300 atm. Assume Cl2 is 0 atm. PCL5 (g) > PCl3 (g) + Cl2 (g)
1. Consider the following reaction: 3CH4(g)→C3H8(g)+2H2(g) Calculate ΔG at 298 K if the reaction mixture consists...
1. Consider the following reaction: 3CH4(g)→C3H8(g)+2H2(g) Calculate ΔG at 298 K if the reaction mixture consists of 41 atm of CH4, 0.011 atm of C3H8, and 2.1×10−2 atm of H2. Express the Gibbs free energy in kilojoules to two significant digits. 2. The element gallium (Ga) freezes at 29.8 ∘C, and its molar enthalpy of fusion is ΔHfus = 5.59 kJ/mol. Calculate the value of ΔS when 61.0 g of Ga(l) solidifies at 29.8 ∘C. in J/K
Consider the equilibrium between COBr2, CO and Br2. COBr2(g) <-->CO(g) + Br2(g) K = 2.08 at...
Consider the equilibrium between COBr2, CO and Br2. COBr2(g) <-->CO(g) + Br2(g) K = 2.08 at 382 K The reaction is allowed to reach equilibrium in a 14.6-L flask. At equilibrium, [COBr2] = 4.50×10-2 M, [CO] = 0.306 M and [Br2] = 0.306 M. (a) The equilibrium mixture is transferred to a 7.30-L flask. In which direction will the reaction proceed to reach equilibrium? right or left (b) Calculate the new equilibrium concentrations that result when the equilibrium mixture is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT